11 research outputs found

    NBSymple, a double parallel, symplectic N-body code running on Graphic Processing Units

    Full text link
    We present and discuss the characteristics and performances, both in term of computational speed and precision, of a numerical code which numerically integrates the equation of motions of N 'particles' interacting via Newtonian gravitation and move in an external galactic smooth field. The force evaluation on every particle is done by mean of direct summation of the contribution of all the other system's particle, avoiding truncation error. The time integration is done with second-order and sixth-order symplectic schemes. The code, NBSymple, has been parallelized twice, by mean of the Computer Unified Device Architecture to make the all-pair force evaluation as fast as possible on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the O(N) computations are distributed on various CPUs by mean of OpenMP Application Program. The code works both in single precision floating point arithmetics or in double precision. The use of single precision allows the use at best of the GPU performances but, of course, limits the precision of simulation in some critical situations. We find a good compromise in using a software reconstruction of double precision for those variables that are most critical for the overall precision of the code. The code is available on the web site astrowww.phys.uniroma1.it/dolcetta/nbsymple.htmlComment: Paper composed by 29 pages, including 9 figures. Submitted to New Astronomy

    Correction to: SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo

    Get PDF
    International audienc

    SERENA:Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo

    Get PDF
    International audienceThe ESA-JAXA BepiColombo mission to Mercury will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric particle dynamics at Mercury as well as their interactions with solar wind, solar radiation, and interplanetary dust. The particle instrument suite SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is flying in space on-board the BepiColombo Mercury Planetary Orbiter (MPO) and is the only instrument for ion and neutral particle detection aboard the MPO. It comprises four independent sensors: ELENA for neutral particle flow detection, Strofio for neutral gas detection, PICAM for planetary ions observations, and MIPA, mostly for solar wind ion measurements. SERENA is managed by a System Control Unit located inside the ELENA box. In the present paper the scientific goals of this suite are described, and then the four units are detailed, as well as their major features and calibration results. Finally, the SERENA operational activities are shown during the orbital path around Mercury, with also some reference to the activities planned during the long cruise phase

    Correction to: SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo (Space Science Reviews, (2021), 217, 1, (11), 10.1007/s11214-020-00787-3)

    No full text
    The original online version of this article was revised because a number of authors had the wrong affiliation number next to their names. © 2021, Springer Nature B.V
    corecore