933 research outputs found

    Investigations of fast neutron production by 190 GeV/c muon interactions on different targets

    Get PDF
    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon, copper and lead targets. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.Comment: 19 pages, 11 figures ep

    Clinical and Genetic Characterization of Portuguese Patients with Pseudohypoparathyroidism Type Ib

    Get PDF
    Patients with pseudohypoparathyroidism type Ib (PHP-Ib) present hypocalcemia and hyperphosphatemia, as a consequence of a resistance to PTH action, through its G-protein-coupled receptor, in the renal tubules. This resistance results from tissue-specific silencing of the G-protein alpha-subunit (G(s)α), due to imprinting disruption of its encoding locus--GNAS. In familial PHP-Ib, maternally inherited deletions at the STX16 gene are associated to a regional GNAS methylation defect. In sporadic PHP-Ib, broad methylation changes at GNAS arise from unknown genetic causes. In this study, we describe the clinical presentation of PHP-Ib in four Portuguese patients (two of whom were siblings), and provide further insight for the management of patients with this disease. The diagnosis of PHP-Ib was made after detection of GNAS imprinting defects in each of the cases. In the siblings, a regional GNAS methylation change resulted from a known 3.0 kb STX16 deletion. In the other two patients, the broad methylation defects at GNAS, which were absent in their relatives, resulted from genetic alterations that remain to be identified. We report the first clinical and genetic study of Portuguese patients with PHP-Ib. The genetic identification of a hereditary form of this rare disease allowed an early diagnosis, and may prevent hypocalcemia-related complications

    Could biochar and green manure be a substitute for synthetic nitrogen fertilization to guarantee rice grain yield and decrease greenhouse gas emissions?

    Get PDF
    The objective of this study was to find a feasible alternative to the use of nitrogen fertilizers for smallholders and commercial farming in tropical flooded rice systems

    Structural analysis reveals a pyruvate-binding activator site in the Agrobacterium tumefaciens ADP–glucose pyrophosphorylase

    Get PDF
    The pathways for biosynthesis of glycogen inbacteria and starch in plants are evolutionarily andbiochemically related. They are regulated primarily by ADP?glucose pyrophosphorylase, which evolved to satisfy metabolic requirements of a particular organism. Despite the importance of these two pathways, little is known about the mechanism that controls pyrophosphorylase activity or the location of its allosteric sites. Here, we report pyruvate-bound crystal structures of ADP-glucose pyrophosphorylase from the bacterium Agrobacterium tumefaciens, identifying a previously elusive activator site for the enzyme. We found that the tetrameric enzyme binds two molecules of pyruvate in a planar conformation. Each binding site is located in a crevice between the C-terminal domains of two subunits where they stack via a distinct β-helix region. Pyruvate interacts with the side chain of Lys-43 and with the peptide backbone of Ser-328 and Gly-329 from both subunits. These structural insights led to the design of two variants with altered regulator properties. In one variant (K43A), the allosteric effect was absent, whereas in the other (G329D), the introduced Asp mimicked the presence of pyruvate. The latter generated an enzyme that was pre-activated and insensitive to further activation by pyruvate. Our study furnishes a deeper understanding of how glycogen biosynthesis is regulated in bacteria and the mechanism by which transgenic plants increased their starch production. These insights will facilitate rational approaches to enzyme engineering for starch production in crops of agricultural interest and will promote further study of allosteric signal transmission and molecular evolution in this important enzyme family.Fil: Hill, B. L.. Dpt Of Chem And Biochemistry. Loyola University Chicago; Estados UnidosFil: Mascarenhas, R.. Dpt Of Chem And Biochemistry. Loyola University Chicago; Estados UnidosFil: Patel, H. P.. Dpt Of Chem And Biochemistry. Loyola University Chicago; Estados UnidosFil: Asención Diez, Matías Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Wu, R.. Dpt Of Chem And Biochemistry. Loyola University Chicago; Estados UnidosFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Liu, D.. Dpt Of Chem And Biochemistry. Loyola University Chicago; Estados UnidosFil: Ballicora, M. A.. Dpt Of Chem And Biochemistry. Loyola University Chicago; Estados Unido

    Design and Mechanism of (S)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic Acid, a Highly Potent γ-Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Addiction

    Get PDF
    © 2018 American Chemical Society. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. Inhibition of GABA aminotransferase (GABA-AT), a pyridoxal 5′-phosphate (PLP)-dependent enzyme that degrades GABA, has been established as a possible strategy for the treatment of substance abuse. The raised GABA levels that occur as a consequence of this inhibition have been found to antagonize the rapid release of dopamine in the ventral striatum (nucleus accumbens) that follows an acute challenge by an addictive substance. In addition, increased GABA levels are also known to elicit an anticonvulsant effect in patients with epilepsy. We previously designed the mechanism-based inactivator (1S,3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (2), now called CPP-115, that is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved drug that is an inactivator of GABA-AT. CPP-115 was found to have high therapeutic potential for the treatment of cocaine addiction and for a variety of epilepsies, has successfully completed a Phase I safety clinical trial, and was found to be effective in the treatment of infantile spasms (West syndrome). Herein we report the design, using molecular dynamics simulations, synthesis, and biological evaluation of a new mechanism-based inactivator, (S)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid (5), which was found to be almost 10 times more efficient as an inactivator of GABA-AT than CPP-115. We also present the unexpected crystal structure of 5 bound to GABA-AT, as well as computational analyses used to assist the structure elucidation process. Furthermore, 5 was found to have favorable pharmacokinetic properties and low off-target activities. In vivo studies in freely moving rats showed that 5 was dramatically superior to CPP-115 in suppressing the release of dopamine in the corpus striatum, which occurs subsequent to either an acute cocaine or nicotine challenge. Compound 5 also attenuated increased metabolic demands (neuronal glucose metabolism) in the hippocampus, a brain region that encodes spatial information concerning the environment in which an animal receives a reinforcing or aversive drug. This multidisciplinary computational design to preclinical efficacy approach should be applicable to the design and improvement of mechanism-based inhibitors of other enzymes whose crystal structures and inactivation mechanisms are known

    Larotrectinib efficacy and safety in TRK fusion cancer: An expanded clinical dataset showing consistency in an age and tumor agnostic approach

    Get PDF
    Background: TRK fusion cancer results from gene fusions involving NTRK1, NTRK2 or NTRK3. Larotrectinib, the first selective TRK inhibitor, has demonstrated an overall response rate (ORR) of 75% with a favorable safety profile in the first 55 consecutively enrolled adult and pediatric patients with TRK fusion cancer (Drilon et al.,NEJM2018). Here, we report the clinical activity of larotrectinib in an additional 35 TRK fusion cancer patients and provide updated follow-up of the primary analysis set (PAS) of 55 patients as of 19thFeb 2018. Methods: Patients with TRK fusion cancer detected by molecular profiling from 3 larotrectinib clinical trials (NCT02122913, NCT02637687, and NCT02576431) were eligible.Larotrectinib was administered until disease progression, withdrawal, or unacceptable toxicity. Disease status was assessed using RECIST version 1.1. Results: As of Feb 2018, by independent review, 6 PRs in the PAS deepened to CRs. The median duration of response (DoR) and progression-free survival in the PAS had still not been reached, with 12.9 months median follow-up. At 1 year, 69% of responses were ongoing, 58% of patients remained progression-free and 90% of patients were alive. An additional 19 children and 25 adults (age range, 0.1-78 years) with TRK fusion cancer were enrolled after the PAS, and included cancers of the salivary gland, thyroid, lung, colon, melanoma, sarcoma, GIST and congenital mesoblastic nephroma. In 35 evaluable patients, the ORR by investigator assessment was 74% (5 CR, 21 PR, 6 SD, 2 PD, 1 not determined). In these patients, with median follow-up of 5.5 months, median DoR had not yet been reached, and 88% of responses were ongoing at 6 months, consistent with the PAS. Adverse events (AEs) were predominantly grade 1, with dizziness, increased AST/ALT, fatigue, nausea and constipation the most common AEs reported in ≥ 10% of patients. No AE of grade 3 or 4 related to larotrectinib occurred in more than 5% of patients. Conclusions: TRK fusions are detected in a broad range of tumor types. Larotrectinib is an effective age- and tumor-agnostic treatment for TRK fusion cancer with a positive safety profile. Screening patients for NTRK gene fusions in solid- and brain tumors should be actively considered
    corecore