11 research outputs found

    Chromosome dynamics in Bacillus subtilis -Characterization of the Structural Maintenance of Chromosomes (SMC) complex

    Get PDF
    Alle Zellen müssen ihr Erbmaterial verdoppeln und dafür Sorge tragen, daß jede Tochterzelle einen kompletten Satz des Erbguts vor der Zellteilung erhält. In Bakterien müssen die Chromosomen organisiert und kompaktiert werden, während sie gleichzeitig dynamisch sein müssen, um laufende zelluläre Prozesse wie DNA Reparatur, Rekombination, Transktiption und Replikation zu ermöglichen. SMC (Structural Maintenance of Chromosome) Proteine bilden eine ubiquitäre Proteinfamilie, die eine zentrale Rolle in verschiedenen Chromosomendynamiken spielt. Das Hauptaugenmerk in dieser Arbeit ruht auf der Charakterisierung der SMC Proteine und ihrer Partner aus Bacillus subtilis. Genbanksuchen haben zu der Identifizierung zweier Interaktionspartner des SMC Proteins geführt. Diese Proteine, ScpA und ScpB, sind in Bakterien und Archaen konserviert. Die Deletion des scpA oder des scpB Gens führte zu einem der smc Deletionsmutante ähnlichen Phänotyp, d.h. temperatursensitivem langsamen Wachstum (unterhalb 23°C), dekondensierten Nukleoiden (zelluläre Struktur der Chromosomen) und einem ausgeprägten Segregationsdefekt. Die gleichzeitige Deletion der Gene erzeugte keinen veränderten Phänotyp, was zeigt, dass alle drei Proteine im gleichen Aspekt der Chromosomen-Kondensation und Segregation fungieren. Um ihre Funktion in vivo zu untersuchen, wurden die Proteine in Zellen mit Hilfe von voll funktionellen GFP Fusionen lokalisiert. Alle drei Proteine bildeten diskrete Foci in den Zellen, einem bis dato unbekannten Lokalisationsmuster, das sich dynamisch während des Zellzyklus veränderte: zu Beginn des Zellzyklus befanden sich die Foci in der Zellmitte, und nach der Verdopplung des Focus wanderten die beiden Foci rasch entgegengesetzt in Richtung der Zellpole. In diesen bipolaren Foci verblieben die drei Proteine für den Rest des Zellzyklus. Die Bildung des Proteinkomplexes konnte durch Fluoreszenz Resonanz Energie Transfer (FRET) und durch Depletionsstudien belegt werden. So konnte die Bildung der Foci nur in Anwesenheit aller Proteine beobachtet werden, nicht jedoch in Abwesenheit eines der drei Proteine. Die spezifische Lokalisierung des SMC Komplex hing auch von fortlaufender DNA Replikation ab, von zellulärer Gyrase Aktivität (d.h. von der Struktur der DNA), sowie von der ATPase-Aktivität von SMC. Die Überproduktion von SMC führte zu einer Über-Kondensation der Nukleoide, wobei die Lokalisation des SMC Komplexes erhalten blieb, was darauf hin deutet, daß die beobachteten Foci aktive Kondensationszentren darstellen. Weiterhin zeigten die Proteine des SMC Komplex wachstumsabhängige Expression. SMC und ScpB waren nur in wachsenden Zellen vorhanden, und wurden rasch beim Übergang in die Statonärphase abgebaut. Die Analyse der RNA Mengen in verschiedenen Wachstumsphasen durch Primer Extensionsanalyse zeigte, daß das smc Transkript im Übergang zur Stationärphase nicht abnimmt. Diese Experimente zeigten einen bisher nicht identifizierten smc Promotor auf, und erbrachten den Nachweis, daß SMC posttranskriptionell reguliert wird. Die smc, scpA, und scpB Deletionsmutanten wiesen ebenfalls eine ausgeprägte Sensitivität gegenüber Mitomycin C (MMC) auf, welches Doppelstrangbrüche (DSBs) in die DNA einführt. Demnach wird der SMC Komplex ebenfalls für die Reparatur von DSBs benötigt. Weiterhin wurde die Funktion des SMC Proteins YirY untersucht, welches homolog zum DNA Reparatur Protein SbcC aus Escherichia coli ist. Die yirY Deletion führte ebenfalls zu einer deutlichen Sensitivität zu MMC, was eine Rolle in der DSB Reparatur belegt. In MMC behandelten Zellen bildete YirY Foci auf der DNA, welche aktive DSB Reparaturzentren darstellen könnten. In Gegensatz dazu waren die anderen Proteine aus dem gleichen Operon, AddA, AddB, and SbcD überall in den Zellen vorhanden und bildeten keine speziellen Strukturen, was darauf hindeutet, daß SbcC und AddAB in verschiedenen Reparaturwegen fungieren. Die subzelluläre Lokalisation der Topoisomerase IV Untereinheiten ParC und ParE wurde ebenfalls in dieser Arbeit beleuchtet. ParC lokalisierte auf dem gesamten Nukleoid, ganz im Gegenteil zu einer früheren Studie, in der ParC ausschließlich in der Nähe der Zellpole vorhanden war, wonach ParC eine spezialisierte Rolle bei der Dekatenierung von Chromosomen zugesprochen wurde. Durch Überproduktion von ParC und ParE wurden die Nukeloide noch stärker kompaktiert, was zusammen mit der Lokalisierung eine generelle Rolle in der Chromosomenkompaktierung belegt. Insgesamt läßt sich schlußfolgern, daß die Lokalisation von Proteinen, die an der Chromosomensegregation, DNA Reparatur und Translation beteiligt sind, ein wesendlich definierteres Bild der räumlichen Funktion der Proteine in lebenden Bakterien erbrachte

    Chromosome dynamics in Bacillus subtilis -Characterization of the Structural Maintenance of Chromosomes (SMC) complex

    Get PDF
    Alle Zellen müssen ihr Erbmaterial verdoppeln und dafür Sorge tragen, daß jede Tochterzelle einen kompletten Satz des Erbguts vor der Zellteilung erhält. In Bakterien müssen die Chromosomen organisiert und kompaktiert werden, während sie gleichzeitig dynamisch sein müssen, um laufende zelluläre Prozesse wie DNA Reparatur, Rekombination, Transktiption und Replikation zu ermöglichen. SMC (Structural Maintenance of Chromosome) Proteine bilden eine ubiquitäre Proteinfamilie, die eine zentrale Rolle in verschiedenen Chromosomendynamiken spielt. Das Hauptaugenmerk in dieser Arbeit ruht auf der Charakterisierung der SMC Proteine und ihrer Partner aus Bacillus subtilis. Genbanksuchen haben zu der Identifizierung zweier Interaktionspartner des SMC Proteins geführt. Diese Proteine, ScpA und ScpB, sind in Bakterien und Archaen konserviert. Die Deletion des scpA oder des scpB Gens führte zu einem der smc Deletionsmutante ähnlichen Phänotyp, d.h. temperatursensitivem langsamen Wachstum (unterhalb 23°C), dekondensierten Nukleoiden (zelluläre Struktur der Chromosomen) und einem ausgeprägten Segregationsdefekt. Die gleichzeitige Deletion der Gene erzeugte keinen veränderten Phänotyp, was zeigt, dass alle drei Proteine im gleichen Aspekt der Chromosomen-Kondensation und Segregation fungieren. Um ihre Funktion in vivo zu untersuchen, wurden die Proteine in Zellen mit Hilfe von voll funktionellen GFP Fusionen lokalisiert. Alle drei Proteine bildeten diskrete Foci in den Zellen, einem bis dato unbekannten Lokalisationsmuster, das sich dynamisch während des Zellzyklus veränderte: zu Beginn des Zellzyklus befanden sich die Foci in der Zellmitte, und nach der Verdopplung des Focus wanderten die beiden Foci rasch entgegengesetzt in Richtung der Zellpole. In diesen bipolaren Foci verblieben die drei Proteine für den Rest des Zellzyklus. Die Bildung des Proteinkomplexes konnte durch Fluoreszenz Resonanz Energie Transfer (FRET) und durch Depletionsstudien belegt werden. So konnte die Bildung der Foci nur in Anwesenheit aller Proteine beobachtet werden, nicht jedoch in Abwesenheit eines der drei Proteine. Die spezifische Lokalisierung des SMC Komplex hing auch von fortlaufender DNA Replikation ab, von zellulärer Gyrase Aktivität (d.h. von der Struktur der DNA), sowie von der ATPase-Aktivität von SMC. Die Überproduktion von SMC führte zu einer Über-Kondensation der Nukleoide, wobei die Lokalisation des SMC Komplexes erhalten blieb, was darauf hin deutet, daß die beobachteten Foci aktive Kondensationszentren darstellen. Weiterhin zeigten die Proteine des SMC Komplex wachstumsabhängige Expression. SMC und ScpB waren nur in wachsenden Zellen vorhanden, und wurden rasch beim Übergang in die Statonärphase abgebaut. Die Analyse der RNA Mengen in verschiedenen Wachstumsphasen durch Primer Extensionsanalyse zeigte, daß das smc Transkript im Übergang zur Stationärphase nicht abnimmt. Diese Experimente zeigten einen bisher nicht identifizierten smc Promotor auf, und erbrachten den Nachweis, daß SMC posttranskriptionell reguliert wird. Die smc, scpA, und scpB Deletionsmutanten wiesen ebenfalls eine ausgeprägte Sensitivität gegenüber Mitomycin C (MMC) auf, welches Doppelstrangbrüche (DSBs) in die DNA einführt. Demnach wird der SMC Komplex ebenfalls für die Reparatur von DSBs benötigt. Weiterhin wurde die Funktion des SMC Proteins YirY untersucht, welches homolog zum DNA Reparatur Protein SbcC aus Escherichia coli ist. Die yirY Deletion führte ebenfalls zu einer deutlichen Sensitivität zu MMC, was eine Rolle in der DSB Reparatur belegt. In MMC behandelten Zellen bildete YirY Foci auf der DNA, welche aktive DSB Reparaturzentren darstellen könnten. In Gegensatz dazu waren die anderen Proteine aus dem gleichen Operon, AddA, AddB, and SbcD überall in den Zellen vorhanden und bildeten keine speziellen Strukturen, was darauf hindeutet, daß SbcC und AddAB in verschiedenen Reparaturwegen fungieren. Die subzelluläre Lokalisation der Topoisomerase IV Untereinheiten ParC und ParE wurde ebenfalls in dieser Arbeit beleuchtet. ParC lokalisierte auf dem gesamten Nukleoid, ganz im Gegenteil zu einer früheren Studie, in der ParC ausschließlich in der Nähe der Zellpole vorhanden war, wonach ParC eine spezialisierte Rolle bei der Dekatenierung von Chromosomen zugesprochen wurde. Durch Überproduktion von ParC und ParE wurden die Nukeloide noch stärker kompaktiert, was zusammen mit der Lokalisierung eine generelle Rolle in der Chromosomenkompaktierung belegt. Insgesamt läßt sich schlußfolgern, daß die Lokalisation von Proteinen, die an der Chromosomensegregation, DNA Reparatur und Translation beteiligt sind, ein wesendlich definierteres Bild der räumlichen Funktion der Proteine in lebenden Bakterien erbrachte

    Dynamic assembly, localization and proteolysis of the Bacillus subtilis SMC complex

    Get PDF
    BACKGROUND: SMC proteins are key components of several protein complexes that perform vital tasks in different chromosome dynamics. Bacterial SMC forms a complex with ScpA and ScpB that is essential for chromosome arrangement and segregation. The complex localizes to discrete centres on the nucleoids that during most of the time of the cell cycle localize in a bipolar manner. The complex binds to DNA and condenses DNA in an as yet unknown manner. RESULTS: We show that in vitro, ScpA and ScpB form different complexes with each other, among which the level of the putative 2 ScpA/4 ScpB complex showed a pronounced decrease in level upon addition of SMC protein. Different mutations of the ATPase-binding pocket of SMC reduced, but did not abolish interaction of mutant SMC with ScpA and ScpB. The loss of SMC ATPase activity led to a loss of function in vivo, and abolished proper localization of the SMC complex. The formation of bipolar SMC centres was also lost after repression of gyrase activity, and was abnormal during inhibition of replication, resulting in single central clusters. Resumption of replication quickly re-established bipolar SMC centres, showing that proper localization depends on ongoing replication. We also found that the SMC protein is subject to induced proteolysis, most strikingly as cells enter stationary phase, which is partly achieved by ClpX and LonA proteases. Atomic force microscopy revealed the existence of high order rosette-like SMC structures in vitro, which might explain the formation of the SMC centres in vivo. CONCLUSION: Our data suggest that a ScpA/ScpB sub-complex is directly recruited into the SMC complex. This process does not require SMC ATPase activity, which, however, appears to facilitate loading of ScpA and ScpB. Thus, the activity of SMC could be regulated through binding and release of ScpA and ScpB, which has been shown to affect SMC ATPase activity. The proper bipolar localization of the SMC complex depends on a variety of physiological aspects: ongoing replication, ATPase activity and chromosome supercoiling. Because the cellular concentration of SMC protein is also regulated at the posttranscriptional level, the activity of SMC is apparently regulated at multiple levels

    Structure of the Yeast WD40 Domain Protein Cia1, a Component Acting Late in Iron-Sulfur Protein Biogenesis

    Get PDF
    SummaryThe WD40-repeat protein Cia1 is an essential, conserved member of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery in eukaryotes. Here, we report the crystal structure of Saccharomyces cerevisiae Cia1 to 1.7 Å resolution. The structure folds into a β propeller with seven blades pseudo symmetrically arranged around a central axis. Structure-based sequence alignment of Cia1 proteins shows that the WD40 propeller core elements are highly conserved. Site-directed mutagenesis of amino acid residues in loop regions with high solvent accessibility identified that the conserved top surface residue R127 performs a critical function: the R127 mutant cells grew slowly and were impaired in cytosolic Fe/S protein assembly. Human Ciao1, which reportedly interacts with the Wilms' tumor suppressor, WT1, is structurally similar to yeast Cia1. We show that Ciao1 can functionally replace Cia1 and support cytosolic Fe/S protein biogenesis. Hence, our structural and biochemical studies indicate the conservation of Cia1 function in eukaryotes

    Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair

    Get PDF
    BACKGROUND: Several distinct pathways for the repair of damaged DNA exist in all cells. DNA modifications are repaired by base excision or nucleotide excision repair, while DNA double strand breaks (DSBs) can be repaired through direct joining of broken ends (non homologous end joining, NHEJ) or through recombination with the non broken sister chromosome (homologous recombination, HR). Rad50 protein plays an important role in repair of DNA damage in eukaryotic cells, and forms a complex with the Mre11 nuclease. The prokaryotic ortholog of Rad50, SbcC, also forms a complex with a nuclease, SbcD, in Escherichia coli, and has been implicated in the removal of hairpin structures that can arise during DNA replication. Ku protein is a component of the NHEJ pathway in pro- and eukaryotic cells. RESULTS: A deletion of the sbcC gene rendered Bacillus subtilis cells sensitive to DNA damage caused by Mitomycin C (MMC) or by gamma irradiation. The deletion of the sbcC gene in a recN mutant background increased the sensitivity of the single recN mutant strain. SbcC was also non-epistatic with AddAB (analog of Escherichia coli RecBCD), but epistatic with RecA. A deletion of the ykoV gene encoding the B. subtilis Ku protein in a sbcC mutant strain did not resulted in an increase in sensitivity towards MMC and gamma irradiation, but exacerbated the phenotype of a recN or a recA mutant strain. In exponentially growing cells, SbcC-GFP was present throughout the cells, or as a central focus in rare cases. Upon induction of DNA damage, SbcC formed 1, rarely 2, foci on the nucleoids. Different to RecN protein, which forms repair centers at any location on the nucleoids, SbcC foci mostly co-localized with the DNA polymerase complex. In contrast to this, AddA-GFP or AddB-GFP did not form detectable foci upon addition of MMC. CONCLUSION: Our experiments show that SbcC plays an important role in the repair of DNA inter-strand cross-links (induced by MMC), most likely through HR, and suggest that NHEJ via Ku serves as a backup DNA repair system. The cell biological experiments show that SbcC functions in close proximity to the replication machinery, suggesting that SbcC may act on stalled or collapsed replication forks. Our results show that different patterns of localization exist for DNA repair proteins, and that the B. subtilis SMC proteins RecN and SbcC play distinct roles in the repair of DNA damage

    Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein

    No full text
    Disruption of ypuG and ypuH open reading frames in Bacillus subtilis leads to temperature-sensitive slow growth, a defect in chromosome structure and formation of anucleate cells. The genes, which were named scpA and scpB, were found to be epistatic to the smc gene. Fusions of ScpA and ScpB to the fluorescent proteins YFP or CFP showed that both proteins co-localize to two or four discrete foci that were present at mid-cell in young cells, and within both cell halves, generally adjacent to chromosomal origin regions, in older cells. ScpA and ScpB foci are associated with DNA and depend on the presence of SMC and both Scps. ScpA and ScpB are associated with each other and with SMC in vivo, as determined using the FRET technique and immunoprecipitation assays. Genes similar to scpA and scpB are present in many bacteria and archaea, which suggests that their gene products form a condensation complex with SMC in most prokaryotes. The observed foci could constitute condensation factories that pull DNA away from mid-cell into both cell halves

    White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis

    No full text
    Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV- and ionizing radiation. It has not been elucidated whether light-sensing proteins, and in particular photolyases play a role in its UV-tolerance. Based on homology analysis, U. maydis has 10 genes encoding putative light-responsive proteins. Four amongst these belong to the cryptochrome/photolyase family (CPF) and one represents a white collar 1 ortholog (wco1). Deletion mutants in the predicted cyclobutane pyrimidine dimer CPD- and (6-4)-photolyase were impaired in photoreactivation. In line with this, in vitro studies with recombinant CPF proteins demonstrated binding of the catalytic FAD cofactor, its photoreduction to fully reduced FADH(-) and repair activity for cyclobutane pyrimidine dimers (CPDs) or (6-4)-photoproducts, respectively. We also investigated the role of Wco1. Strikingly, transcriptional profiling showed 61 genes differentially expressed upon blue light exposure of wild-type, but only eight genes in the wco1 mutant. These results demonstrate that Wco1 is a functional blue light photoreceptor in U. maydis regulating expression of several genes including both photolyases. Finally, we show that the wco1 mutant is less tolerant against UV-B due to its incapability to induce photolyase expression
    corecore