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Zusammenfassung
Alle Zellen müssen ihr Erbmaterial verdoppeln und dafür Sorge tragen, daß

jede Tochterzelle einen kompletten Satz des Erbguts vor der Zellteilung erhält. In

Bakterien müssen die Chromosomen organisiert und kompaktiert werden, während sie

gleichzeitig dynamisch sein müssen, um laufende zelluläre Prozesse wie DNA

Reparatur, Rekombination, Transktiption und Replikation zu ermöglichen. SMC

(Structural Maintenance of Chromosome) Proteine bilden eine ubiquitäre

Proteinfamilie, die eine zentrale Rolle in verschiedenen Chromosomendynamiken

spielt. Das Hauptaugenmerk in dieser Arbeit ruht auf der Charakterisierung der SMC

Proteine und ihrer Partner aus Bacillus subtilis.

Genbanksuchen haben zu der Identifizierung zweier Interaktionspartner des

SMC Proteins geführt. Diese Proteine, ScpA und ScpB, sind in Bakterien und

Archaen konserviert. Die Deletion des scpA oder des scpB Gens führte zu einem der

smc Deletionsmutante ähnlichen Phänotyp, d.h. temperatursensitivem langsamen

Wachstum (unterhalb 23°C), dekondensierten Nukleoiden (zelluläre Struktur der

Chromosomen) und einem ausgeprägten Segregationsdefekt. Die gleichzeitige

Deletion der Gene erzeugte keinen veränderten Phänotyp, was zeigt, dass alle drei

Proteine im gleichen Aspekt der Chromosomen-Kondensation und Segregation

fungieren. Um ihre Funktion in vivo zu untersuchen, wurden die Proteine in Zellen

mit Hilfe von voll funktionellen GFP Fusionen lokalisiert. Alle drei Proteine bildeten

diskrete Foci in den Zellen, einem bis dato unbekannten Lokalisationsmuster, das sich

dynamisch während des Zellzyklus veränderte: zu Beginn des Zellzyklus befanden

sich die Foci in der Zellmitte, und nach der Verdopplung des Focus wanderten die

beiden Foci rasch entgegengesetzt in Richtung der Zellpole. In diesen bipolaren Foci

verblieben die drei Proteine für den Rest des Zellzyklus. Die Bildung des

Proteinkomplexes konnte durch Fluoreszenz Resonanz Energie Transfer (FRET) und

durch Depletionsstudien belegt werden. So konnte die Bildung der Foci nur in

Anwesenheit aller Proteine beobachtet werden, nicht jedoch in Abwesenheit eines der

drei Proteine. Die spezifische Lokalisierung des SMC Komplex hing auch von

fortlaufender DNA Replikation ab, von zellulärer Gyrase Aktivität (d.h. von der

Struktur der DNA), sowie von der ATPase-Aktivität von SMC. Die Überproduktion

von SMC führte zu einer Über-Kondensation der Nukleoide, wobei die Lokalisation



2

des SMC Komplexes erhalten blieb, was darauf hin deutet, daß die beobachteten Foci

aktive Kondensationszentren darstellen.

Weiterhin zeigten die Proteine des SMC Komplex wachstumsabhängige

Expression. SMC und ScpB waren nur in wachsenden Zellen vorhanden, und wurden

rasch beim Übergang in die Statonärphase abgebaut. Die Analyse der RNA Mengen

in verschiedenen Wachstumsphasen durch Primer Extensionsanalyse zeigte, daß das

smc Transkript im Übergang zur Stationärphase nicht abnimmt. Diese Experimente

zeigten einen bisher nicht identifizierten smc Promotor auf, und erbrachten den

Nachweis, daß SMC posttranskriptionell reguliert wird. Die smc, scpA, und scpB

Deletionsmutanten wiesen ebenfalls eine ausgeprägte Sensitivität gegenüber

Mitomycin C (MMC) auf, welches Doppelstrangbrüche (DSBs) in die DNA einführt.

Demnach wird der SMC Komplex ebenfalls für die Reparatur von DSBs benötigt.

Weiterhin wurde die Funktion des SMC Proteins YirY untersucht, welches

homolog zum DNA Reparatur Protein SbcC aus Escherichia coli ist. Die yirY

Deletion führte ebenfalls zu einer deutlichen Sensitivität zu MMC, was eine Rolle in

der DSB Reparatur belegt. In MMC behandelten Zellen bildete YirY Foci auf der

DNA, welche aktive DSB Reparaturzentren darstellen könnten. In Gegensatz dazu

waren die anderen Proteine aus dem gleichen Operon, AddA, AddB, and SbcD

überall in den Zellen vorhanden und bildeten keine speziellen Strukturen, was darauf

hindeutet, daß SbcC und AddAB in verschiedenen Reparaturwegen fungieren.

Die subzelluläre Lokalisation der Topoisomerase IV Untereinheiten ParC und

ParE wurde ebenfalls in dieser Arbeit beleuchtet. ParC lokalisierte auf dem gesamten

Nukleoid, ganz im Gegenteil zu einer früheren Studie, in der ParC ausschließlich in

der Nähe der Zellpole vorhanden war, wonach ParC eine spezialisierte Rolle bei der

Dekatenierung von Chromosomen zugesprochen wurde. Durch Überproduktion von

ParC und ParE wurden die Nukeloide noch stärker kompaktiert, was zusammen mit

der Lokalisierung eine generelle Rolle in der Chromosomenkompaktierung belegt.

Ein weiterer Aspekt in dieser Arbeit war die Lokalisierung von Ribosomen.

Das L1 Protein aus der großen Untereinheit lokalisierte in wachsenden Zellen in den

zytoplasmatischen Stellen, die das Nukeloid umgeben, wohingegen es in stationären

Zellen und nach Inhibition der Transkription überall in der Zelle vorlag. Demnach

hängt die spezifische Lokalisierung von Ribosomen von aktiver RNA Synthese in den

Zellen ab.
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Insgesamt läßt sich schlußfolgern, daß die Lokalisation von Proteinen, die an

der Chromosomensegregation, DNA Reparatur und Translation beteiligt sind, ein

wesendlich definierteres Bild der räumlichen Funktion der Proteine in lebenden

Bakterien erbrachte.
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Summary

All cells need to duplicate and separate their genetic material faithfully into the

future daughter cells before cell division takes place. In bacteria, the chromosome has

to be organized and compacted whilst, at the same time, it needs to be dynamic to

allow other ongoing cellular processes like repair, recombination, transcription,

replication and segregation to take place. SMC (Structural Maintenance of

Chromosome) protein belongs to a ubiquitous protein family that play crucial roles in

chromosome dynamics. The main interest of this work is to characterize the function

of the SMC protein in Bacillus subtilis.

Data base searches have led to the identification of two interaction partners of

SMC. These proteins, ScpA and ScpB are conserved among bacterial and archaeal

species possessing SMC. The scpA or scpB deletions showed a similar phenotype to

that of a smc disruption, namely temperature sensitive slow growth (below 23°C),

decondensed nucleoids and a strong segregation defect. Their simultaneous deletion

did not exacerbate the phenotype, suggesting that all the three proteins function in the

same pathway in chromosome condensation. To investigate their in vivo function, the

proteins where localized in the cells using functional GFP fusions. The subcellular

localization showed bipolar foci, a unique pattern of localization that was dynamic

and cell cycle dependent. The foci were present at mid-cell position in smaller cells

and separated towards opposite cell poles within a few minutes. The formation of a

complex between SMC, ScpA, and ScpB in vivo was confirmed using fluorescence

resonance energy transfer (FRET) and depletion studies. Formation of foci was only

seen in the presence of all three proteins, but not in the absence of any one of them.

The specific localization pattern of these proteins also depended on ongoing DNA

replication, on active gyrase and thus on DNA topology, as well as on SMC’s ATPase

activity. Overproduction of SMC led to increased compaction of nucleoids but the

localization was retained in the form of foci suggesting that the foci represent active

chromosome condensation centers.

The proteins of the SMC complex showed growth dependent protein

expression. SMC and ScpB proteins were present in actively replicating exponential

phase cells, but were rapidly depleted as the cells entered stationary phase. Analysis

with total RNA extracts from various growth phases by primer extension studies
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showed a strong transcript for SMC that was present even in stationary phase. This

experiment led to the identification of a new promoter for smc, and suggests that SMC

is regulated at the protein level by a protease that is induced at the onset of stationary

phase. Smc, scpA, and scpB deletion mutant cells were also sensitive to Mitomycin C

(MMC) treatment, which induces double strand breaks (DSB) into DNA. This finding

revealed a role of the SMC complex in DSB repair.

I also investigated the role of YirY, a homolog of the DSB repair protein SbcC

which is a proposed member of SMC family. Upon disruption of yirY/sbcC, the cells

did not show any visible phenotype but the cells were sensitive to MMC, suggesting

its role in repair. SbcC formed foci only in MMC treated cells, so the foci in the cell

might represent a DNA repair centers. Other proteins located in the same operon as

SbcC, AddA, AddB, and SbcD, did not show any specific pattern of localization, but

were present throughout the cell and showed slight increase in their fluorescence

intensity after MMC treatment, suggesting that SbcC and AddAB function in different

in repair pathways.

The localization of topoisomerase IV subunits ParC and ParE has also been

investigated in this work. The fluorescent protein fusion of ParC localized throughout

the nucleoid, contrarily to the previously published bipolar localization as foci, which

had suggested a specialized function of topoisomerase IV in chromosome

decatenation. Upon over expression of ParC and ParE, the cells contained more

condensed nucleoids, revealing a general role of topoisomerase IV in global

chromosome compaction.

A further aspect of this work was the study of dynamic localization of

ribosomes. The large subunit ribosome protein L1 showed specific localization in the

cytoplasmic space surrounding the nucleoid in growing cells, and was seen diffused

throughout the cell in the stationary phase. The same effect was observed upon

inhibition of transcription, suggesting the dependence of specific ribosome

localization on active transcription.

In toto, localization of DNA segregation, DNA repair and the ribosomal

proteins has provided a more defined view of the spatial organization of these cellular

processes in live bacterial cells.
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Abbreviations

ATP adenisine-5’- triphosphate

amyE gene coding for α-amylase

bp base pair

cDNA complementary DNA

Cmr chloramphenicol resistant

DAPI 4',6-diamidino-2-phenylindole

DSBR double strand break repair

dsDNA double stranded DNA

EDTA ethylene diamine tetra acetic acid

EM electron microscopy

EtBr ethidium bromide

Fig figure

FP fluorescent protein

FRET fluorescent resonance energy transfer

GFP/YFP/CFP green/ yellow/cyan fluorescent protein

h hour

IPTG isopropanol-b-D-thiogalactopyranoside

kb kilo base(s)

LB Luria-Bertani medium

MCS multiple cloning sites

min minute(s)

mls macrolide lincosamine streptogramidine B

MMC mitomycin C

nm nanometer

O.Dxxx optical density at xxx nm

Ori origin of replication

PCR polymerase chain reaction

RNase ribonuclease

RT room temperature

rpm revolutions per minute

SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis

SMC structural maintenance of chromosome protein

Tm melting temperature of dsDNA
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TB tris boric acid buffer

TE tris EDTA buffer

tetr tetracyclin resistance

Tris tris-(hydroxymethyl) aminomethane

U unit of enzyme activity

UV ultraviolet light

wt wild type strain

sum of

deletion

:: gene replacement at chromosome by double crossover
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1 Introduction

Life on earth persists because of its propagation through cell division - a

central cellular process that is shared by all living organisms. Before a cell divides it

has to duplicate a number of sub cellular components, most importantly the DNA

molecule(s) carrying the genetic information and depending on the organism,

organelles and then segregate them into the appropriate daughter cell compartments.

This process is maintained by well-coordinated action of many dedicated proteins that

make up a functional network whose complexity depends on the nature of the

respective organism. Although compared to eukaryotes, prokaryotic cell division

seems much simpler with most of the time only one major DNA molecule and lack of

membrane-dependent organelles, many basic principles are functionally conserved.

The DNA of bacterial chromosome is several thousand micrometers long and

therefore are condensed into a compact structure called ‘nucleoids’ that has the

diameter of only 0.5 µm (Rouviere-Yaniv et al., 1979). A typical bacterial cell

contains >250 different species of DNA binding proteins (Robinson and Kadonaga,

1998), which include DNA polymerases, topoisomerases, helicases, histone-like

proteins, etc. These proteins are associated with the nucleoid and take part in

chromosome organization during various cellular processes like replication,

recombination, repair, modification and transcription of DNA. One among these

players is the SMC protein, which belongs to a ubiquitous protein family and plays a

key role in maintaining chromosome organization. This work is focused on the in vivo

characterization of SMC and proteins interacting with SMC by making use of genetic

and microscopic approaches.

From the important model organisms Escherichia coli a Gram-negative

enterobacterium, Bacillus subtilis a Gram-positive soil bacterium, and Caulobacter

cresentus a dimorphic Gram-negative aquatic bacterium all of which have been under

thorough investigation for several years now, our laboratory decided to focus on

Bacillus subtilis which is a broadly distributed, rod-shaped micro-organism that

resides in the upper layers of soil. B. subtilis is a facultative aerobe and capable of

converting to anaerobic nitrate respiration under oxygen limiting conditions

(Hoffmann et al., 1995). It has the ability to form extremely resistant endospores in

response to nutrient deprivation or slow dehydration (Stragier and Losick, 1996) and
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because it is genetically easily accessible, it has been accepted as one of the best-

studied bacteria even before its genome was entirely sequenced a few years ago

(Kunst et al., 1997; Weber and Marahiel, 2003).

1.1 Basic mechanisms of bacterial replication and cell division

A cell divides only after molecular sensors have detected that its genetic

material, DNA, providing the molecular blueprint for daughter cells to survive, has

been faithfully duplicated in a damage-free manner. In eukaryotes, this sensor is a cell

division cycle molecule Cdc25, that turns on the proteins required for the actual cell

division event (Jinno et al., 1994). Precise DNA replication has to be followed by the

segregation process which involves a complex sequence of structural events termed

mitosis in eukaryotes. This is a marked difference compared to prokaryotes where

replication is not followed by but coupled to the segregation process and is therefore

coordinated with the cell growth and division (Helmstetter, C, 1996).

In bacteria, chromosome replication is initiated when a critical size of a

growing cell is reached (Messer, W., and Weigel, C, 1996). This parameter is called

the initiation mass. In Vibrio harveyi the protein CgtA was shown to be involved in

coupling of chromosome replication to cell growth and division. In B. subtilis, its

homologue, Obg, has been proposed to control DNA replication and regulate

initiation of sporulation by sensing the intracellular GTP level and stimulating the

activity of a phosphorelay system which in turn activates several proteins involved in

replication processes (Sikora-Borgula et al., 2002).

Initiation of replication commences when an ATP-bound replication initiation

protein DnaA binds to the AT rich DnaA boxes in the replication origin, OriC,

regions and causes local strand melting (Moriya et al., 1988). The DnaB helicase is

then recruited to the unwound region. Together with other proteins of the primosome

complex the strands are loaded on the DNA polymerase replication machinery, which

is located at the mid cell. In B. subtilis, the DNA now moves through a stationary

replisome complex (Lemon and Grossman, 1998) whereas in case of C. cresentus the

replisome is mobile (Jensen et al., 2002). During the replication process, replicated

chromosomes move outward towards each cell halves. The termination of replication

takes place through arresting of the replication forks by complex formation of the
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replication termination protein (RTP) with the ter sites located at approximately 172°

on the chromosome (Bussiere and Bastia, 1999). The replicated chromosomes are

thereafter separated by decatenation process involving topoisomerase IV and the site-

specific recombinases, CodV and RipX (Sciochetti and Piggot, 2000). Once the mid

cell region is cleared from the replicated chromosomes by FtsK/SpoIIIE, bacterial

cells assemble a ring like cytoskeletal structure at the division site, which is composed

of tubulin-like FtsZ protein that constricts the cellular membrane and forms the

septum. This FtsZ ring structure or the divisome is localized to the division site by the

Min proteins (Raskin and De Boer, 1997). The Min system plays an important role in

division site placement by inhibiting FtsZ ring formation at polar regions. It

comprises the MinC and MinD complex and the inhibitor protein which is called

DivIVA in B. subtilis and MinE in E. coli, that ensures the inhibition only at the polar

regions (Cha and Stewart, 1997; Edwards and Errington, 1997; Marston et al., 1998).

Under normal conditions, bacterial cell division is symmetric. However, B. subtilis

undergoes asymmetric division when conditions of nutrient limitation and high

population density result in the initiation of a sporulation pathway that culminates in

the formation of a heat- and desiccation-resistant spore. During sporulation, FtsZ

forms a septum close to one of the cell poles - a process regulated by the master

sporulation regulator, Spo0A (Levin and Losick, 1996; Stragier and Losick, 1996). In

case of Caulobacter, the cell cycle is inherently asymmetric, a sessile-stalked cell

undergoes asymmetric cytokinesis releasing a flagellated motile swarmer cell. This

motile cell has to re-differentiate into a sessile-stalker cell before becoming able to

undergo a further round of cell division (Wheeler et al., 1998). This is achieved by

repression of the replication process by a response regulator (CtrA) that is later

proteolyzed when the swarmer cell differentiates into a sessile cell. (Shapiro and

Losick, 2000).

The mechanism of bacterial chromosome partitioning was explained by an

‘extrusion-capture’ model proposed by (Lemon and Grossman, 2001) (fig. 1). This

model assumes that the energy from the replication factory is used to power

partitioning of the replicated chromosomes. The replicated chromosomes are captured

at the cell quarter position and are organized through compaction and supercoiling

which further assists the segregation process. This model was then further refined by a

‘push, direct, condense, hold and clear’ model by (Sawitzke and Austin, 2001) and
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assumes that daughter DNA strands are actively transported to the cell halves,

possibly by the Par proteins.

Fig. 1: Simplified model of bacterial cell cycle. DNA (grey lines), oriC (grey circles),
terminus, terC (dark grey square), DNA polymerase (triangles), and cytokinetic ring
FtsZ (dashed line). DNA replication initiates at the mid cell. The sister origins
separate out bidirectionally. The replication continues followed by compaction of a
newly replicated DNA until there are two complete and separate chromosomes.
Finally the cell divides medially by the FtsZ ring formation. Figure adapted from
(Lemon and Grossman, 2001).

1.2 Organization of bacterial chromosome

With some exceptions such as Streptomycetes coelicolor that possesses linear

DNA and the Borrelia genus whose genome is made from linear DNA with hairpin

ends, most bacterial cells possess a closed circular genomic DNA molecule. As stated

earlier, the bacterial chromosome is about 1000-fold longer than the cell size (Drlica,

K., 1986) and is condensed into a compact structure called ‘nucleoid’. The bacterial

nucleoid is functionally analogous to the eukaryotic nucleus, e.g. the packing density

of the DNA in the nucleoid is like that of eukaryotic interphase nuclei and would thus

allow diffusion in and out of even large macromolecules (Kellenberger, 1991). Early

attempts to elucidate the nucleoid structure using techniques of fixation led to a

number of artefacts caused by the fixation technique itself. Nucleoids prepared from

the cryo-freeze substituted cells showed a central dense regions and long, thinner
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cytoplasmic protrusion-like clefts, see fig. 2 (Bohrmann et al., 1991; Hobot et al.,

1985):

Fig. 2: Schematic model of bacterial nucleoid from the sections of cryofixed, freeze
substituted E. coli cells. Figure adapted from Bohrmann et al., 1991.

The nascent RNA was shown to localize at the nucleoid periphery (Ryter and

Chang, 1975), hence these edges of chromosomal protrusions from the nucleoids were

interpreted as areas of a metabolically active nucleoid undergoing active transcription.

Furthermore, DNA from isolated nucleoids was shown to possess a negatively

supercoiled topology and these supercoils could not be relaxed by a single nick. This

observation was interpreted in terms of topologically independent chromosomal

domains that were calculated as 50 per genome for E. coli (Sinden and Pettijohn,

1981); (Drlica, 1986).

1.2.1 Membrane attachment of nucleoids

The compact nucleoid structure is maintained by membrane-DNA, protein-

DNA and RNA-DNA interactions (Guillen and Bohin, 1986). In B. subtilis or E. coli,

it was not possible to obtain membrane-free nucleoids (Harmon and Taber, 1977) (fig.

3), which led to the hypothesis that nucleoids are anchored to the membrane.

Specifically, in B. subtilis, the chromosome origin region isolates were enriched in

membrane fractions and these attachments are thought to facilitate chromosome

replication and segregation processes. DnaB was one among the proteins involved in

DNA attachment process playing an essential role in DNA replication and membrane

attachment of the Ori of replication of chromosomes (Laurent and Vannier, 1973). It

was shown that DnaB forms specific foci and localizes at the OriC region (Imai et al.,

2000). Recent investigations identified a novel protein RacA that localized near the

poles and on the nucleoid and acts as an adhesion component bridging the origin

region to the cell poles (Ben-Yehuda et al., 2003).
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Fig. 3: Membrane attachment of nucleoid- EM of isolated E. coli nucleoid spread in
the presence of spermidine. (Scale bar 1µm). Fig. adapted from ‘Escherichia coli and
Salmonella typhimurium’, Cellular and Molecular Biology, Vol 1, 1987 (ASM press).

1.2.2 The nucleoid structure is dynamic

Nucleoids in rapidly growing cells appear in complex shapes (Zimmerman,

2003). This is due to the occurrence of cellular processes like transcription and

replication that require a very dynamic state of chromosomes. Moreover,

chromosomes appear to have a defined orientation within the cell which has been

determined using various origin region markers (Levin and Grossman, 1998; Losick

and Shapiro, 1999; Webb et al., 1997). Soon after replication, origin regions separate

from each other and move to opposite sides of the cell, while the terminus regions is

found in the mid cell (Teleman et al., 1998; Webb et al., 1997). The newly replicated

origin regions then position near the cell quarter regions for the next round of

replication. In vegetative cells of B. subtilis, the nucleoid appears as a discrete mass
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centered close to mid cell, with prominent gaps at each cell pole. Soon after the onset

of sporulation, the nucleoid undergoes a conformational change, in which it

approximately doubles in length so that it reaches from pole to pole in this state, it is

termed as axial filament (Errington, 2001). In spores, the nucleoid is packed into

donut-like ring of approximately 1 micrometer in diameter (Pogliano et al., 1995).

During germination, the ring-shaped nucleoid disappears and the nucleoid becomes

more dense while later in spore outgrowth the shape of the nucleoid is reverted to the

diffuse lobular shape seen in growing cells (Ragkousi et al., 2000).

Changes in the nucleoid structures have been observed during cell growth

phase and in various environmental stress conditions, depicting the altered

transcription. Upon cold shock, the nucleoid appears more condensed (Weber et al.,

2001). Elevated hydrostatic pressure perturbs cell division and nucleoid structure

(Welch et al., 1993) and the addition of transcription inhibitor rifamycin leads to

decondensed nucleoid in B. subtilis (Guillen and Bohin, 1986). Addition of

chloramphenicol in exponentially growing cells showed changes in appearance from

irregular spheres and dumbbells to large, brightly stained spheres and ovals, while the

late exponential phase cells showed elongated axial filament structures (Bylund et al.,

1993).

1.3 Nucleoid-associated proteins

DNA topology plays a critical role during dynamic chromosomal processes

and is affected by changes in growth phase, environmental stress situations, and by

several DNA-interacting proteins. Proteins that bind and organize DNA structure are

vital components of the cell. By interacting with their DNA substrate, they affect gene

expression, growth efficiency, and cell viability through change in the state of

chromosome condensation and relaxation. Some of the relevent nucleoid-associated

proteins are briefly discussed below.

HBsu - The histone-like protein in B. subtilis, belongs to a highly conserved

HU protein family. HBsu is coded by hbs gene, which is regulated by two promoters.

Throughout the cell cycle, HBsu is the most abundant protein associated with
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nucleoid, is essential for growth and differentiation and has been shown to modulate

DNA topology (Klein and Marahiel, 2002; Micka and Marahiel, 1992). HBsu was

extracted from isolated nucleoids and characterized by its ability to introduce negative

supercoils into DNA in the presence of topoisomerase I (Le Hegarat et al., 1993).

HBsu binds to DNA as homodimer in a sequence-independent manner with a

preference for curved DNA (Kohler and Marahiel, 1997). HBsu localizes to the

nucleoids in growing cell and colocalizes with SASPs (see below) on the ring-shaped

nucleoid of the germinating spores (Ross and Setlow, 2000). HBsu has also been

demonstrated to play a role as part of the bacterial signal recognition particle involved

in presecretory protein translocation (Nakamura et al., 1999) and in DNA repair and

recombination (Alonso et al., 1995).

SASPs - Small acid-soluble spore proteins are found in two forms, the alpha-

and beta-type, encoded by six sspA-F genes in B. subtilis that are expressed during

sporulation and are implicated in packaging of DNA in spores. The SASPs bind with

greater affinity to GC rich DNA regions and increase DNA persistence length

tremendously by changing the DNA conformation B to A (Mohr et al., 1991). SASPs

protect the spore chromosome against damages induced by heat, oxidizing agents,

desiccation, and UV irradiation (Mason and Setlow, 1987; Setlow and Setlow, 1995).

SASPs also act as an amino acid reservoir for protein synthesis during spore

germination (Setlow, 1988) and colocalize with the nucleoid until early germination

(Ross and Setlow, 2000). During the germination process, the donut shaped nucleoid

transforms into a more compact mass due to the degradation of most of the spore’s

pool of major alpha/beta-type SASPs (Ragkousi et al., 2000).

1.3.1 Partition proteins

Plasmid segregation system in E. coli. Plasmids are autonomously replicating

genetic entities that are ubiquitous in bacteria. Plasmids control their own replication

(Hiraga, 1992), utilizing the standard cellular replication machinery and are actively

segregated between daughter cells (Gordon and Wright, 2000; Hiraga, 2000). The

presence of a partition cassette (par) allows for the inheritance of the plasmid copy in

each daughter cell. This partition cassette encodes two structural genes and a cis-

acting parS site (a centromere analog). Par+ plasmids form clusters and localize to the
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cell poles, while Par- plasmids localize randomly in a cell (Weitao et al., 2000).

Plasmid partitioning either uses ParA, an ATPase with a Walker-type ATP-binding

motif or ParM, an actin-type-ATPase (Bignell and Thomas, 2001; van den Ent et al.,

2002). In both cases, ParB, a second partition protein, binds to the cis-acting DNA

partitioning parS site and recruits the ATPase into the nucleoprotein partition

complex (Bouet and Funnell, 1999). In the ParA system, plasmid pairs translocate to

the mid-cell position shortly before septation and are then propelled bidirectionally by

the partition apparatus into the daughter cell halves (Li and Austin, 2002). For

plasmid partition involving an actin-type ParM protein, extensive polymerization of

this protein is likely to direct plasmid movement during segregation (van den Ent et

al., 2002).

Spo0J and Soj constitute the Par protein system in B. subtilis and are

homologs of ParB and ParA proteins involved in plasmid and chromosome

segregation in E. coli. Spo0J and Soj were originally identified as proteins required

for an early stage of the sporulation pathway. The ParB homolog Spo0J controls the

expression of early acting sporulation genes which require expression of the Spo0A

transcription factor. Soj is related to the ParA ATPase family and is a transcriptional

regulator that functions antagonistically to Spo0J. The Spo0J and Soj have been

demonstrated to function as partition proteins in E. coli and were required for the

specific localization of plasmids at cell quarters when heterologously expressed in E.

coli (Yamaichi and Niki, 2000). The Soj-Spo0J system operates a checkpoint that

couples chromosome partitioning to developmental gene expression. When

chromosome partitioning is incomplete, Soj represses the activity of Spo0A. The

completion of partitioning results in Spo0J inactivating the Soj repression. Spo0J

binds to specifically conserved 16-bp parS sequences clustered around the soj-spo0J

operon. These sequences occur approximately ten times within the Ori region of B.

subtilis genome (Lin and Grossman, 1998). Immunofluorescence and GFP tagging of

Spo0J show that they localize as foci near the origin region (Lewis and Errington,

1997). Deletion of Spo0J affects nucleoid organization and segregation and leads to a

100-fold increase in anucleate cells suggesting its active role in chromosome

partitioning (Ireton et al., 1994); (Draper and Gober, 2002). Spo0J was also thought to

be involved in the spatial organization of Ori regions of the chromosome, since its

mutations led to defects in the orientation of the prespore chromosome. Soj oscillates
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from one pole to the other within the period of 20 seconds in a Spo0J-dependent

manner and in its absence, Soj localizes to the nucleoid (Marston and Errington,

1999a). Deletion of soj (parA homolog) does not result in a DNA segregation defect,

but it is required for the stability of parS-containing plasmids. In contrast to B.

subtilis, inactivation of either parA or parB in C. crescentus is lethal to the cell

(Marczynski and Shapiro, 2002).

1.3.2 Proteins involved in chromosome dynamics

Topoisomerases participate in maintaining chromosome function by adjusting

DNA topology appropriately to meet the requirements of changing conditions such as

temperature, growth phase, nutrient availability, etc. and facilitate fundamental

cellular processes such as chromosome segregation, transcription, and DNA

replication (Brill et al., 1987). Topoisomerases possess the unique ability to create a

transient break in a DNA molecule that allows the passage of one strand through

another and then religate the cut molecule (Hsieh and Brutlag, 1980). Type I

topoisomerases cleave one strand of the DNA duplex in an ATP-independent manner,

while type II topoisomerases cleave both strands and utilize ATP. Topoisomerase II

activity facilitates DNA replication and transcription by removing superhelical twists

that result from the progression of the DNA and RNA polymerases along the

chromosome (Koshland and Strunnikov, 1996). While the DNA molecules of

mesophilic bacteria are negatively supercoiled, which facilitates the DNA processes

of replication, transcription and recombination (Declais et al., 2001), those of

hyperthermophilic archaea possess positively supercoiled DNA that are maintained by

the activity of a unique enzyme termed reverse gyrase that protects their

chromosomes from denaturation (Lopez-Garcia and Forterre, 1999).

Bacillus subtilis harbours four topoisomerases: topA, coding for topoisomerase

I, unwinds DNA by removing negative supercoils and has been shown to play a role

in illegitimate plasmid recombination that allows recombination between non-

homologous sequences and recognizes a consensus sequence 5'-

A/(T)CAT(A)/(T)TA(A)/(A)(T)/(T)A-3' (Meima et al., 1998). TopB codes for

topoisomerase III, which has been characterized in E. coli, where it acts as a cellular

decatenase during the process of chromosome segregation. topB is a multicopy

suppressor of a topA null mutation (Broccoli et al., 2000). Both topA and topB are
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type I topoisomerases and required for proper chromosomal segregation in E. coli

(Zhu et al., 2001). Gyrase and topoisomerase IV finally constitute the type II

topoisomerases. Gyrase is formed by two subunits coded by gyrA and the ATP-

binding subunit gyrB. Similarly, parE and parC code for topoisomerase IV. Gyrases

are involved in the initial stages of replication easing the positive supercoils and the

topoisomerase IV acts at the final stage of replication as a decatenase (Huang et al.,

1998) and are essential for cell cycle progression and developmental regulation in

Caulobacter crescentus (Ward and Newton, 1997).

SpoIIIE is a DNA tracking protein with ATPase activity and a member of a

large family of bacterial proteins involved in DNA translocation (Dworkin, 2003;

Errington et al., 2001). It is required for complete segregation of chromosomal DNA

into the pre-spore during asymmetric division in sporulating B. subtilis. Chromosome

partitioning during sporulation differs from vegetative chromosome partitioning in

that it occurs after formation of the septum. SpoIIIE localizes to the prespore septum

where it is proposed to pump the remaining chromosome from the mother cell

compartment into the prespore (Wu and Errington, 1997). Mutations in the spoIIIE

gene prevent proper partitioning of one chromosome into the developing prespore

during sporulation but has no effect on partitioning in vegetatively dividing cells

(Pedersen and Setlow, 2000). The gene encoding SpoIIIE is expressed constitutively

and plays a role in chromosome segregation during vegetative growth by translocating

trapped DNA from enclosing septum during cell division (Pedersen and Setlow,

2000).

PrfA, the penicillin-binding protein-related factor A, also designated as RecU,

is located downstream in an operon with ponA, a penicillin-binding protein (PBP1)

involved in peptidoglycan crosslinking. PrfA/RecU is implicated in several cellular

processes such as cell wall synthesis, chromosome segregation, and DNA

recombination and repair (Pedersen and Setlow, 2000). A prfA deletion rendered cells

more sensitive to DNA-damaging agents, decreased the transformation efficiency

(Fernandez et al., 1998), and led to 0.9-3% anucleate cells and cells with abnormal

nucleoid staining patterns. Inactivation of prfA also exacerbated smc and spo0J

chromosome segregation phenotype and its overexpression in E. coli caused nucleoid

condensation (Pedersen and Setlow, 2000). PrfA has been shown to possess
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endonuclease activity and is structurally related to the restriction enzyme PvuII

(Rigden et al., 2002).

1.4 SMC - Structural/stable maintenance of chromosomes protein

SMC proteins are ubiquitous and are an essential part of a high order complex

which is involved in chromosome dynamics. In 1985, as pioneers of SMC research

Larinov and Strinnikov, observed an increase in the copy number of artificial mini

chromosomes in a Saccharomyces cerevisiae mutant with an impaired segregation

process. These mutants were mapped in four genes, AMC1, AMC2, AMC3, and

AMC4 (AMC = Arificial Mini Chromosome) which control the segregation of natural

chromosomes in yeast. AMCs were later rediscovered as SMC for stability of mini

chromosomes (Larionov and Strunnikov, 1987; Strunnikov et al., 1993). While

eukaryotes code for 6 different types of SMC protein represented by SMC1-6, to date,

prokaryotes contain only a single allele for an SMC homolog (Hirano, 2002).

1.4.1 Structure of SMC

The proteins belonging to the SMC family are large proteins in the range

between 110 and 170 kDa (Harvey et al., 2002) and share common principles in

domain organization: A globular N-terminus contains a conserved sequence

resembling a Walker A ATP-binding motif (G-NGSGKSN) and a C-terminal domain

harbors both the highly conserved LSGG motif signature, called C motif, and P-P-

DE-DAALD which corresponds to a Walker B motif (Walker et al., 1982). The N-

and C-terminal domains are connected via two long coiled coil domains (of variable

length) separated by a globular hinge domain of approx. 150 amino acids in length:

Fig. 4: Schematic diagram of domain organization in a typical SMC protein.
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Based on the primary sequence it was predicted that SMC proteins might form

antiparallel dimers, and that dimerization is probably mediated by inter- or

intramolecular interactions (Saitoh et al., 1994). Electron microscopic analysis of B.

subtilis SMC by (Melby et al., 1998), showed various conformations of SMC and the

most prominent ‘V’ shaped conformation, see fig. 5. In their model, they suggested

that SMC proteins form antiparallel dimers connected through the coiled coil

segments with the N- and C-termini of each monomer forming a head domain located

at the ends of a ‘V’-like structure (Melby et al., 1998):

Fig. 5: Electron micrographs from B. subtilis SMC representing the most common
conformations. Images were adapted from (Melby et al., 1998).

So far, no crystallization of the whole SMC molecule has been reported, which

might be due to its large and flexible nature, but several workgroups have come up

with the crystal structures of different domains. Analysis of the crystal structure of N-

terminal domain of MukB which is a member of SMC family and a functional analog

of SMC protein in E. coli, showed that the N- and C-terminal domains of SMC

molecules have to come together to create an ATPase activity pocket (van den Ent et

al., 1999). Rad50 is a member of eukaryotic SMC-like proteins and differs from other

true SMC in having shorter coiled coil arms and a conserved CxxC motif within the

hinge domain. The crystal structure of the Rad50 catalytic domain showed two ATP

molecules being sandwiched between the P loop of Walker A and the signature C

motif (Hopfner et al., 2000). Furthermore, the crystal structure of the head domain
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comprising the N- and the C-terminal domain of SMC from Thermotoga maritima,

showed close similarity to the ABC ATPases (Lowe et al., 2001).

Based on electron microscopic analysis of SMC and MukB, it was earlier

proposed that SMC forms antiparallel dimers mediated by the coiled coil interaction

between two different subunits, i.e. the catalytic ATP cassette or the head domain is

formed by the intermolecular interaction between the N- and the C-terminal domains

of the dimer (Melby et al., 1998). But the recent evidence from the crystal structure of

the SMC hinge domain and the hinge domain with a part of the coiled coils from

Thermotoga maritima showed that the hinge forms a donut-like dimer (Haering et al.,

2002), proving that the dimer formation mediated by the hinge and the head domain is

formed by the intramolecular interaction of N- and C-terminal domains of the same

SMC molecule. This view was supported by biochemical studies with various point

mutations at the hinge region and site-directed protein-protein cross linking

experiments (Hirano et al., 2001; Hirano and Hirano, 2002).

1.4.2 SMC in Eukaryotes

Eukaryotic SMC proteins have been well investigated in the model organisms

Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila, and Xenopus. So far,

six different SMC family members have been identified which take part in various

chromosomal events (Hagstrom and Meyer, 2003). SMC1 and SMC3 form a part of

cohesin, that acts like glue between sister chromatids, which is laid down during DNA

replication at S phase until the sister chromatids are subsequently segregated away

from each other in metaphase stage. The cohesin complex comprises the SMC1 and

SMC3 heterodimer and two non-SMC proteins, termed as Scc1 and Scc3, in S.

cerevisiae that helps the SMC’s fix to the sister chromatids (Koshland and Guacci,

2000). Once chromosomes are properly aligned in the mitotic spindle, cohesin is

cleaved by proteolysis of Scc1 to allow sister chromatids to segregate into the two

daughter cells. Condensin is required for the substantial reorganization of

chromosome structure as chromosomes compact during mitosis and is also crucial for

resolving connections between sister chromatids. The SMC2 and SMC4 form a part

of the 13S condensin complex, together with three non-SMC subunits, namely Ycs4,

Ycs5, and Brn1 in S. cerevisiae (Hirano et al., 1997). The condensing complex
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introduces positive writhe into the DNA by bending the DNA into the coils that

remodel the chromosome into a more compact structure (Kimura and Hirano, 1997).

Apart from these most canonical roles of SMC in cohesin and condensin of

chromosomes, they also play a role in gene regulation in part by influencing

enhancers, silencers and insulators (Cobbe and Heck, 2000). In C. elegans dosage-

compensation factors resemble condensin subunits. This condensin-like complex

assembles on hermaphrodite X chromosomes to downregulate X-linked gene

expression. The switch in the mating type of S. cerevisiae from a- to -mating type by

intrachromosomal gene conversion is brought about by cohesin. Other gene

regulatory functions carried out by SMC’s are nerve-cell formation and wing

patterning in Drosophila (Cobbe and Heck, 2000).

Yet another role of SMC proteins is in DNA repair. The first indication that

cohesin subunits are involved in DNA repair was the discovery of mammalian SMC1

and SMC3 as a part of biochemically purified recombinational repair complex (Cobbe

and Heck, 2000). Two new additional SMC proteins, SMC5 and SMC6 were

identified as being involved in repair (Fujioka et al., 2002). SMC6 was identified as a

gene product of Rad18 in S. pombe whose mutants were hypersensitive to UV and -

radiation (Taylor et al., 2001). SMC5 and SMC6 are essential to maintain checkpoint

arrest after DNA damage. In Arabidopsis, SMC6 mutants were defective in

intrachromosomal homologous recombination in somatic cells (Hirano, 2002;

Mengiste et al., 1999). Yet another member of specialized subfamily of SMC

proteins, Rad50 in complex with Mre11 and Nbs1, take part in double stranded break

repair pathways, homologous recombination and non-homologous end joining (Smith,

2002). Thus SMC proteins in eukaryotes play a central role in almost all chromosome

related processes.

1.4.3 SMC in prokaryotes

In prokaryotes, E. coli was the first identified to possess MukB (a member of

SMC protein sub family). MukB was originally isolated in a genetic screen to detect

mutants with chromosome segregation defects (Hiraga et al., 1991; Niki et al., 1991).

Two genes, the non-SMC like subunits, MukE and MukF located immediately

upstream of MukB, were also shown to be involved in chromosome partitioning.
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Later it was demonstrated that MukE and MukF interact and form a complex with

MukB (Yamanaka et al., 1996; Yamazoe et al., 1999). Homologs of MukB, MukE,

and MukF were found in the other E. coli-related gamma subdivision of

proteobacteria (Klebsiella, Salmonella, Yersinia, Vibrio, Actinobacillus, Haemophilus,

and Pasteurella). Mutations in MukB, MukE, and MukF resulted in (i) slow growth,

(ii) 5% anucleate cell production at the permissive temperature 22°C apparently

caused by chromosome segregation defects, and (iii) restricted growth at 42°C in rich

media. The nucleoids showed aberrant chromosomal condensation (Niki et al., 1991)

and the mutants were hypersensitive to novobiocin (Weitao et al., 1999).

Several suppressors of MukB mutants have been isolated that rescue the

temperature sensitive and chromosome segregation defect. Some of these are SmbA

(Yamanaka et al., 1992), CspC and CspE (Yamanaka et al., 1994), the N-terminus of

RNase E (Kido et al., 1996), and topA (Sawitzke and Austin, 2000). Temperature

sensitivity, anucleate cell production and poor nucleoid folding phenotype from the

mukB strain were suppressed by a seqA null mutation, whereas filamentation,

asymmetric septation and compact folding of the nucleoids observed in the seqA

strain were suppressed by inactivation of the mukB gene function (Weitao et al.,

1999). Mutants suppressing the hypersensitivity of mukB mutant to novobiocin has

been recently mapped near gyrB (Adachi and Hiraga, 2003).

In B. subtilis, the smc gene was detected while characterizing the rnc operon.

It shared 26.6% amino acid identity with SMC1 (Oguro et al., 1995). Null mutations

in B. subtilis SMC resulted in inability to form colonies in rich medium at elevated

temperatures as well as in 10-15% anucleate cell formation and aberrant nucleoids at

the permissive temperature (Britton et al., 1998; Graumann et al., 1998; Moriya et al.,

1998). A similar phenotype was observed in a Caulobacter SMC mutant, but the

formation of anucleate cells was not significant (Jensen and Shapiro, 1999).

B. subtilis SMC is required for proper placement of the origins which

mislocalize in its absence but are still able to separate (Britton et al., 1998; Graumann,

2000). Depletion of SMC in a spoIIIE mutant resulted in cessation of growth and cells

with bisected nucleoid by invaginating septa (Britton and Grossman, 1999). smc

mutants were also synthetically lethal if combined with mutations in spo0J (Ireton et

al., 1994) and recU (Pedersen and Setlow, 2000), both protein products being

involved in chromosome partitioning. B. subtilis SMC affected DNA supercoiling in
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vivo and  a smc null mutant proved to be hypersensitive to gyrase inhibitors in a

manner similar to a mukB mutant in E. coli, whereas the depletion of topoisomerase I

suppressed the partitioning effect of the smc null mutation (Lindow et al., 2002a).

B. subtilis SMC were shown to localize as bipolar foci on the nucleoids and it

was demonstrated that its C-terminal region was required for viability but dispensable

for polar localization (Britton et al., 1998; Graumann et al., 1998). Similar bipolar

localization was also shown for MukB of E. coli (den Blaauwen et al., 2001).

Based on similarity in sequences and function, SMC protein family has been

grouped into eight subfamilies, as shown in the tree form in fig. 6. The first six sub

families comprise SMC1-SMC6 of the eukaryotic SMC proteins. Sub family 7 and 8

are constituted by the bacterial and archaeal SMC proteins (Cobbe and Heck, 2000,

2003). The phylogenetic analysis of SMC related proteins have shown that the closest

relatives to the SMC proteins are the archaeal Rad50 proteins, followed by eukaryotic

Rad50 and eubacterial SbcC proteins (Cobbe and Heck, 2000, 2003).

The existence of six SMC variants in eukaryotes has been attributed to a

symmetric duplication of genes encoding the larger and smaller eukaryotic SMC

proteins. The relatively close proximity of the SMC1/SMC4 or the SMC2/SMC3

lineages to the prokaryotic SMC root also suggests that the first duplication event,

giving rise to the primordial eukaryotic SMC heterodimer, occurred very early in the

evolution (Cobbe and Heck, 2003).
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Fig. 6: Phylogenetic tree showing the divergence of known SMC proteins.
Constructed by Cobbe and Heck (Cobbe and Heck, 2003).
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1.5 Basis and aim of this work

At the beginning of this work, the knowledge of prokaryotic SMC, and

especially SMC from Bacillus subtilis was limited to genetic and physiological

studies of its deletion mutant, which revealed its importance in chromosome

condensation and segregation. This work aimed at further characterization of the SMC

protein and identification of proteins interacting with it using a combination of genetic

and fluorescence microscopic approaches.
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2 Materials and Methods
2.1 Materials

2.1.1 Equipment used in this study

Table 1

Equipment Manufacturer

Automated DNA sequence

analyzer

ABI PRISM 301 Genetic analyzer, Perkin Elmer

Western blotting chamber Semi dry blotting chamber Trans-Blot SD,

Sigma-Aldrich

Centrifuge Heraeus Microfuge pico, Eppendorf 5415 D

Digital pH meter CG8400 Schott

Documentation of agarose gel Video camera Cybertech CS1

DNA thermocycler Eppendorf Mastercycler personal

Digital camera for microscope MircoMax CCD

Fluorescence microscope AX70, Olympus

Electroporation system Biorad Gene pulser II

Gel electrophoresis apparatus Philipps-Universität Marburg workshop

Sonicator Bandelin sonopuls HD2070

Photometer Pharmacia Ultraspec 3000 UV/Visible

spectrophotometer

Water bath shaker C76, New Brunswick scientific

Speed-Vac Uniequip Univapo 150H

2.1.2 Materials and reagents:

Most of the chemicals were of analytical grade and were purchased from Fluka

(Deisenhofen), Gibco BRL (Karlsruhe), Merck (Darmstadt), Roth (Karlsruhe), Serva

(Heidelberg), and Sigma (München).
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Table 2

Materials manufacturer

Sterile filters - 0.45 µm and 0.2 µm Roth (Karlsruhe)

Electroporation cuvettes Eurogenetec (Belgium)

Spectrophotometer cuvettes Roth (Karlsruhe)

Quartz cuvettes Hellma (Müllheim)

For western blotting:

Whatman 3MM filter paper Schleicher and Schuell (Dassel)

Nitrocellulose membrane type BA85 Schleicher and Schuell (Dassel)

Conjugated secondary antibody Amersham Biosciences (Freiburg)

X-ray film Biomax MR Kodak ( Rochester, USA)

Strep-tactin Sepharose column IBA (Göttingen)

Enzymes for molecular biology:

Restriction endonuclease, DNA modifying

enzymes, DNA and protein markers New England Biolabs (Schwalbach)

Expand Long template PCR system Boehringer (Mannheim)

Turbo pfu Stratagene (Heidelberg)

Protease inhibitors:

PMSF (phenylmethylsulfonylfluoride) Sigma (München)

RNase inhibitors:

DEPC (diethylpyrocarbonate) Sigma (München)

ribonuclease-inhibitor (RNAsin) Promega (Mannheim)

Vital stains for microscopy:

DAPI, FM646, Syto59 Molecular Probes TM (Netherlands)

Radionuceotides

α-32P-dATP, α-35S-ATP Amersham Pharmacia Biotech

(Freiburg)
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Computer softwares: Chromas 1.45, DNAstar 5.0,

Clone manager,

Metamorph 4.6 (Universal Imaging)

Only deionized and/or distilled water was used for the preparation of buffer solutions

and growth media, and was sterilized prior to use in all the enzymatic reactions.

2.1.3 Kits

Table 3

Kit designation (manufacturer) Usage description

ABI Prism dRhodamine terminator cycle

sequencing ready reaction kit

(ABI, Foster City, USA)

Reaction ingredients for automated DNA

sequencing

DyeExSpin kit (Qiagen) Purification of reactions for automated

sequencing

Nucleospin Extract (Macheary Nagel AG) Purified plasmid extraction

QIAquick gel extraction kit (Qiagen) Purification of DNA fragments from

agarose gels

QIAquick PCR purification kit (Qiagen) Purification of DNA fragments from PCR

reactions

RNeasy mini kit (Qiagen) Isolation of total RNA from cells.

Sequenase Version 2.0 DNA Sequencing

Kit (USB) Manual sequencing reactions

Strep-tag  ( IBA) Detection and purification of proteins

tagged with  strep tags
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2.1.4 Antibodies

Table 4

Primary antibodies Proteins purified, antibody source

Rabbit anti SMC A. Strunnikov (NIH, USA)

Rabbit anti ScpB A. Volkov, Eurogenetec

Rabbit anti GFP D. Rudner, Eurogenetec

Mouse anti RGSHis Qiagen

Strep IBA

Secondary antibodies

Goat anti Rabbit IgG,

peroxidase conjugated Amersham Life Sciences

Goat anti Mouse IgG,

peroxidase conjugated Amersham Life Sciences

2.1.5 Oligonucleotides

Synthetic oligonucleotides for PCR were supplied by MWG-Biotech AG and Qiagen-

Operon. The annealing temperature was calculated using an empirical formula

provided by MWG-Biotech AG:

LL
CG

Tm 650100
41.03.69 −









 +⋅
⋅+= ∑

With Tm = annealing temperature of the primer, L = length of the primer, and ΣG+C

= sum of G and C residues within the primer sequence. For a more convenient use, a

table was constructed using the ‘Excel spread sheet’ (see table 16 in the appendix, p.

118).
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2.1.6 Bioinformatic tools and computer programs

All sequence comparisons, restriction analysis and in silico cloning procedures

were performed using Clone Manager version 5.0 from Scientific and educational

software, DNA sequencing data analysis was carried out using chromas 1.45 software.

Most other bioinformatic analyses were undertaken using public internet resources:

Table 5

Task: Reference:

collection of bioinformatic tools http://us.expasy.org/tools/

http://www.ncbi.nlm.nih.gov/

BLASTP protein similarity searches http://www.ncbi.nlm.nih.gov/blast/

multiple protein sequence alignments

using ClustalW http://www.ebi.ac.uk/clustalw/

retrieval of E. coli genome data http://genolist.pasteur.fr/Colibri/

retrieval of B. subtilis genome data http://genolist.pasteur.fr/SubtiList/

http://locus.jouy.inra.fr/cgibin/genmic/madbase/pro

gs/madbase.operl

2.1.7 Bacterial host strains

Table 6

Escherichia coli Genotype reference

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44

relA1 lac[F' proAB lacIqZ∆M15 Tn10 (Tetr)]

Stratagene

Top10F’ F- mcrA (mrr-hsdRMS-mcrBC) 80lacZ M15

lacX74 recA1 araD139 galU galK  (ara-

leu)7697 rpsL (StrR) endA1 nupG

Invitrogen

GM48 ara dam dcm galK galT leu supE44 thi-1 ton

tsx

(Yanisch-Perron et al.,

1985)

Bacillus subtilis

PY79 prototrophic, Bacillus subtilis subsp. subtilis P.Youngman

(Webb et al., 1997)

http://us.expasy.org/tools/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/blast/
http://www.ebi.ac.uk/clustalw/
http://genolist.pasteur.fr/Colibri/
http://genolist.pasteur.fr/SubtiList/
http://locus.jouy.inra.fr/cgibin/genmic/madbase/pro
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2.1.8 Plasmids used in this study

pBluescript®SKII(+) is a derivative of pUC19 [Yanish-Perron, 1985 #210]

from Stratagene. It possesses a filamentous phage origin of replication. The plasmid

harbours the β-lactamase gene conferring ampicillin resistance to the bacteria and

thus helps in the selection of transformants. The multiple cloning cassette is inserted

in frame at the 5' of β-galactosidase which is under the control of IPTG-inducible lac

promoter. β-galactosidase hydrolyses Xgal (an analogous substrate of β-

galactosidase) present in the bacterial growth medium resulting in blue coloured

colonies. Insertion of a DNA fragment in the cloning cassette disrupts the β-

galactosidase gene and consequently the expression of the protein. In addition the

plasmid vector has promoter sequences of RNA polymerases of T3 and T7 phages

flanking the multiple cloning cassette. In this study this plasmid was used to subclone

various resistance genes selectable in Bacillus subtilis.

pDG vector series were obtained from Bacillus genetic stock center (BGSC),

Ohio StateUniversity, originally constructed at Patric Stragier’s lab (Guerout-Fleury

et al., 1995). These plasmids contain a bla (β-lactamase gene) for amipicillin

resistance and one of the resistance genes (tetracyclin, kanamycin, erythromycin, or

spectinomycin) selectable in single copy number in Bacillus subtilis. These plasmids

are useful in constructing insertion mutants for Bacillus subtilis genes.

Table 7

pDG vectors used : Resistance cassette:

pDG646 erythromycin

pDG780 kanamycin

pDG1515 tetracyclin

pDG1726 spectinomycin
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pSG vectors were obtained from Peter Lewis at the University of Newcastle,

Australia (Feucht and Lewis, 2001; Lewis and Marston, 1999). These plasmids are

designed for constructing fluorescent protein fusions at C-terminus of protein and can

integrate via single cross over into the B. subtilis genome at the homologous gene

locus. pSG1192 is another fusion vector to the N-terminal of cfp and contains amyE

front and back fragments flanking a spectinomycin resistance (specr) gene that allows

for the stable integration of the cloned gene at the amyE locus. The gene fusion from

amyE locus is transcribed from a Pxyl promoter.

 Table 8

pSG vectors used: genotype

pSG1151 bla, cat, - gfpmut1

pSG 1164 bla, cat, Pxyl - gfp

pSG1170 bla, cat, Pspac - gfpuv

pSG1186 bla, cat, - cfp

pSG1187 bla, cat, - yfp

pSG1192 bla, amyE3  spec Pxyl - cfp amyE5

pMUTIN-YFP/CFP vectors were originally constructed at the laboratory of

Wolfgang Schumann at the University of Bayreuth, Germany (Kaltwasser et al.,

2002), were obtained from BGSC. pMUTIN-YFP/CFP are integration vectors for

tagging C-terminus of gene products with yellow/cyan fluorescent protein (FP). Upon

transformation into B. subtilis, the plasmid can integrate into the chromosome by a

single recombination event. The integrants are erythromycin resistant in B. subtilis,

the transcription of the downstream genes in the operon of the integrants is controlled

by IPTG inducible Pspac promoter.

pMUTIN-YFP  (bla, erm, Pspac- yfp)

pMUTIN-CFP  (bla, erm, Pspac- cfp).
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pJQ43 and pDr111 are integration vector for controlling gene expression B.

subtilis obtained from D. Rudner (Harvard University, Cambridge, Massachusetts).

pJQ43 has an IPTG-inducible hyperspac promoter that allows for the conditional

expression of the gene cloned downstream to it, the vector carries resistance cassette

for chloramphenicol and can integrate into the chromosome by homologous

recombination event. pDr111 is a cloning vector for integration into the ectopic, amyE

site that carries an advanced version of IPTG-inducible hyperspank promoter and has

spectinomycin resistance. The gene cloned downstream of the promoter can be tightly

regulated or overexpressed using IPTG.

pCm::tet is a plasmid (Steinmetz and Richter, 1994) obtained from BGSC.

This plasmid was used to exchange the chloramphenicol (cat) resistance gene with

tetracyclin (tet) resistance by double crossover event. Upon transformation into B.

subtilis strains carrying a cat gene, the transformants become cms and tetr.

List of plasmids and strains constructed and used in this work are listed in tables 13

and 14 in appendix (5.2 and 5.2.1)

2.2 Molecular biology methods

2.2.1 Growth medium

LB / LB agar medium, (Sambrook et al., 1989):

Bactotryptone 10g

Yeast extract 10g

NaCl 5g

dH2O to 1L

Ingredients were dissolved in water, the resulting solution adjusted to pH 7.4 using

1M NaOH and sterilized by autoclaving at 121°C, 1.5bar for 30min. LB agar, 1.5%

agar was added to LB medium before autoclaving. After autoclaving, the medium was

cooled down to approx. 50°C and the antibiotics (table 9) were added, swirled to mix

and poured into petridishes.
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2.2.2 Antibiotic Solutions

Table 9
Antibiotic stock solution                    working solution

Ampicillin 50 mg/ml in H2O   50µg/ml (E. coli)

Kanamycin 10 mg/ml in H2O   50µg/ml (E. coli)

Kanamycin 10mg/ml in H2O 10µg/ml (B. subtilis)

Chloramphenicol  25 mg/ml in EtOH 7.5µg/ml (B. subtilis)

Spectinomycin  25mg/ml in 50%EtOH 25µg/ml (B. subtilis)

Tetracycline   20mg/ml in 50%EtOH 20µg/ml (B. subtilis)

Erythromycin 1  4 mg/ml in EtOH 1 µg/ml (B. subtilis)

Lincomycin 1   25 mg/ml in 50% EtOH  25 µg/ml (B. subtilis)

1MLS - collective term addressing the macrolide lincosamine streptogramidine B

antibiotic family which is applied as a combination of lincomycin and erythromycin

All stock solutions listed above were sterile filtered and the antibiotic stocks

were stored at -20°C.

2.2.3 Techniques related to DNA

2.2.4 Agarose gel electrophoresis of DNA

DNA molecules can be separated according to their sizes by electrophoretic

migration. Depending on the sizes of the DNA fragments to be resolved, for

preparation of agarose gels 0.8-2 % (w/v) agarose was suspended in TB buffer, 0.5

µg/ml of ethidium bromide were added and the mixture was heated until the agarose

had completed dissolved. After cooling to approx. 50°C, the gel was poured and

allowed to solidify. The gel was submerged in a chamber with TB buffer. DNA

samples suspended in DNA loading buffer and electrophoresis was carried out at 50-

75 mA. After the run, DNA was visualized by ultraviolet (UV) irradiation.
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DNA loading buffer: 50% (v/v) glycerol

0.1 M EDTA

0.1% (w/v) SDS

0.05% (w/v) bromo-phenol blue

0.05% (w/v) xylene cyanol FF

TB buffer: 90 mM Tris-HCl pH 8.0

90 mM boric acid

2.2.5 Digestion of DNA by restriction enzymes

The digestion of plasmids/DNA by restriction enzymes was carried out

according to the manufacturer’s instructions (NEB). Typically, a restriction digest

reaction contained 1-2 µg of DNA, 1/10 volume of an appropriate 10x restriction

buffer, 1-2 units of the restriction enzyme. Preparative digestions were carried out in

50 µl volumes and qualitative digestions in 10 µl final volumes. The reactions were

carried out by incubation for 2 h at 37°C and analyzed by agarose gel electrophoresis.

For preparative digestions, the DNA fragment of interest was excised from the gel and

purified through QIAquick gel extraction kit following the manufactures protocol.

2.2.6 Ligation of vector and insert DNA

Vector and insert DNA were digested with appropriate restriction enzymes to

generate compatible ends for cloning. A typical ligation reaction was carried out in a

total volume of 10 µl containing vector and insert DNA (molar ratio vector: insert was

approx. 1:5), 1/10 volume of 10x T4 ligase buffer and 3 U of T4 Ligase. The ligation

reaction was carried out at room temperature or at 16°C overnight.



Materials and Methods

37

2.2.7 E. coli transformation

Electrocompetent bacteria were prepared by repeatedly washing bacteria

harvested in the exponential growth phase (OD600=0.6-0.75) with sterile ice cold

water to remove salt and were then stored at -80°C in 10% glycerol. 1 µl of a typical

ligation reaction (or the whole ligation mix after dialysing against water for 15

minutes on 0.025 µm membrane) was mixed with 40 µl of electrocompetent bacterial

cells and transfered into a 0.2 cm electoporation cuvette and placed into the Biorad

Gene Pulser electroporator. Settings were 25 µFD capacitance, 12.5 kV/cm field

strength, 200 Ω resistance. The electric pulse creates transitory pores in the bacterial

cell wall which allows the entry of the DNA. The transformed bacteria were diluted in

1 ml of pre-warmed LB medium and incubated at 37°C for 45 minutes. This

incubation permits the bacteria to reconstitute their cell walls and start to express the

antibiotic resistance gene present on the plasmid. For selection of transformants,

bacteria were plated on LB-Agar plates containing the appropriate antibiotic and

incubated overnight at 37°C.

2.2.8 Preparation of plasmid DNA

In order to check transformants for the presence of the expected plasmid, small

scale DNA plasmid preparation (mini-prep) was carried out. Individual transformant

colonies were grown under vigorous shaking by overnight incubation at 37°C in 3 ml

LB medium supplemented with appropriate antibiotics. Cells were harvested by

centrifugation and the cell pellet was resuspended in 300 µl of solution I and then

lysed by alkali treatment in 300 µl of solution II, which also denatures the

chromosomal DNA and proteins. The lysate was neutralized with 300 µl of solution

III and plasmid DNA was then precipitated by adding 600 µl of isopropanol. The

precipitated pellet was washed with 70% ethanol, dried and resuspended in 40 µl of

dH2O.

solution I : 25 mM Tris/HCl pH 8.0

10 mM EDTA pH 8.0
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solution II : 0.2 N NaOH

1% w/v SDS

solution III : 60 ml of 5 M potassium acetate

11.5 ml glacial acetic acid

28.5 ml d.H2O

For large scale isolation of plasmids (midi-prep) the cultures were grown in 50 ml and

treated similarly as above with volumes of solution I, II, and III adjusted to 5 ml each.

2.2.9 Polymerase chain reaction - PCR

PCR allows for the exponential amplification of DNA by utilizing repeated cycles

of DNA denaturation, primer annealing and DNA synthesis. The reaction essentially

requires a thermostable DNA polymerase, primers, dNTPs, and a DNA template. A

typical 50 µl PCR reaction mix contained:

5 µl of 10x DNA polymerase buffer

      20 pmol of each primer

200 µM of dNTPs

10-100 ng (approx. 1 µl) of template DNA (1:100 from chromosomal DNA and

1:1000 from plasmid from standard preparations)

1-2 U (1 µl) of DNA polymerase preparation (Turbo pfu or pol mix-Expand Long

template PCR system polymerase)

The reaction was carried out in a PCR thermocycler, using the following program

listed below. The resulting PCR products were analyzed on an agarose gel. For

cloning purposes the PCR product was purified over the column using the QIAquick

PCR purification kit before subjecting to endonuclease digestion.
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Temperature Time (min) Cycles

Initial denaturation: 95°C 2 :00

Denaturation: 95°C 0 :30 10

Primer annealing: Tm - 2°C 0 :30

Extension : 72°C (for pfu)

68°C (for pol mix)

1:00 / kb

1:20 / kb

Exponential amplification: 95°C 0 :30 25

Tm+ 5°C 0 :30

72°C / 68°C  1:00 / kb

Final extension : 72°C / 68°C 4:00

4°C

2.2.10 DNA sequencing

In order to verify clones for the presence of any point mutations, appropriate

DNA preparations were sequenced utilizing a fluorescent dye technique. Clean

plamids were prepared using the Nucleospin plasmid prep kit or QIA plasmid prep

kit. The purity and concentrations were analyzed spectroscopically using DNS

method mode. For a sequencing PCR reaction, plasmid concentrations of 100 ng/kb

were used in a reaction mix of 10 µl which contained 1 µl of 10 pmol primer and 3 µl

of termination mix (dNTP’s, ddNTP’s, buffer, Ampilitaq DNA polymerase FS). A

standardized PCR reaction program was used with an initial denaturation at 95°C for

60 sec, 30 cycles of denaturation at 95°C for 10 sec, primer annealing at Tm-2°C for 5

sec, extension at 60°C for 4 minutes, and terminated with 60°C for 5 min to facilitate

the completion of extension reaction. After PCR completion, the products were

purified either using a column from the Dye Ex kit (Qiagen) or were precipitated with

1µl 3M sodium acetate and 25µl absolute ethanol, the pellet was washed with 70%

ethanol dried and resuspended in 40 µl HPLC-grade H2O. The sample was denatured

at 95°C for 2 min before subjecting to analysis by the ABI 310 sequence analyser.

Sequencing reactions for primer extension studies were carried out using the

‘Sequenase Version 2.0 DNA Sequencing Kit’ from USB.
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2.2.11 Primer annealing cloning

This technique was used to introduce short sequences of 15-40bp, e.g. a strep

tag or multiple cloning site extensions into plasmid DNA. Two complementary

primers were used, which upon annealing generated sticky ends corresponding to the

sites where the desired fragment would be introduced into the plasmid. The primers

were phosphorylated separately with ATP and the T4 PNK enzyme as follows:

12 µl primer (100 pmol)
2 µl of 100 mM ATP

5 µl of 10x PNK buffer
1.5 µl of T4 PNK

dH2O to 50 µl
After two hours of incubation at 37°C the PNK enzyme was denatured at 70°C for 15

min. Equal volumes of the reaction mixtures each containing one of the

phosphorylated primers were mixed and they were denatured at 95°C for 2 min

followed by cooling on ice, which enabled the two primers to anneal. The resulting

annealed product was ligated with the previously cut plasmid. The clones were

analyzed either by sequencing and or by digestion utilizing a newly introduced cutting

site that belonged to the insert.

2.2.12 Site-directed mutagenesis

In vitro site-directed mutagenesis is a valuable technique for studying protein

structure-function relationships. This procedure utilizes a vector carrying the gene to

be modified and two complementary primers carrying the desired point mutation.

These two complementary primers were designed such that the mutation region is

located at the center:

(15-18 bp)-(mutation region)-(15-18 bp)

The primers each complementary to opposite strands of the vector, are extended in the

PCR reaction with a turbo pfu polymerase. The PCR reaction was carried out in a

reaction volume of 50 µl containing 1 µl of the plasmid (from standard plasmid prep).
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Fig 7: PCR program for site directed mutagenesis:

The PCR reaction allows for the incorporation of the primers which results in a

mutated plasmid with staggered nicks. In order to remove the parental vector the

reaction was digested with DpnI for 2-3 hours. DpnI endonuclease is specific for

methylated and hemimethylated DNA which is the case only for the parental vectors.

The product was then purified through the column and used for transformation in E.

coli. The presence of mutations was confirmed by sequencing the plasmids after their

isolation from the transformants.

2.3  Techniques related to RNA

2.3.1 RNA extraction

Total RNA from cells was isolated by following the manufacturer’s protocol

describing the application of the Qiagen RNeasy mini kit. The concentration and

purity of RNA was determined by measuring the absorbance at 260 nm (A260)  in an

UV/VIS spectrophotometer and by visual inspection of the preparation on an RNase-

free agarose gel to exclude degradation. An absorbance A260 of 1 corresponds to a

RNA concentration of 40µg/ml such that the RNA concentration is given by:

ml
gaRNA µ40][ ⋅=

Where [RNA] is the RNA concentration in µg/ml and a, the absorbance measured at

260 nm.
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2.3.2 Primer extension

The primer extension technique is used to determine the relative abundance

and the transcriptional start site of the mRNA of interest from a total cellular RNA

preparation. A labelled oligonucleotide that is specifically complementary to the

mRNA of interest is hybridized to the RNA and serves as a primer for cDNA

synthesis carried out by a reverse transcriptase. This enzyme extends the primers 3’

end until the 5’ end of the template RNA is reached. The size of cDNA product

therefore corresponds to the distance between the primers 5’ end and the 5’ end of the

RNA. The start position of a transcript is then mapped by comparing the cDNA

fragment size to a corresponding dideoxy sequencing reaction.

1. Primer labelling

Primer labelling was carried out in a total volume of 20 µl containing 5 µl of 100

pmol primer, 5µl 32P-αATP, 2 µl of 10x PNK buffer, and 1.5 µl PNK. The reaction

was carried out by incubation at 37°C for one hour followed by heat inactivation at

65°C for 5 minutes. The reaction product mixture was then passed through a G-25

column, to remove excess of 32P-αATP.

2. Primer extension reaction

Reverse transcriptase was used to synthesize a DNA strand complementary to the

RNA template (cDNA). In a 20 µl reaction, 3 µg of RNA, 1 µl of 10 mM dNTPs, 2 µl

of labelled primer, 2 µl of 0.1 M DTT, and 4 µl of 5x first strand buffer were mixed

and the primer allowed to anneal for 2 minutes at 42°C. 1 µl (200U) reverse

transcriptase enzyme (Super ScriptII) was added and the reaction was incubated for

one hour at 42°C. The reaction was terminated by adding an equal volume of stop

solution (80% formamide; 10 mM EDTA; 1 mg/ml Xylene cyanol FF; 1 mg/ml

bromophenol blue). The reaction was incubated at 70°C for 5 min before loading on a

gel.

3. Extension product analysis

To determine the transcriptional start site of the RNA transcript, the reaction products

were visualized on a 6% urea-polyacrylamide gel next to a sequencing reaction

carried out using the same primer and a plasmid as template that carried the DNA

region coding for the transcript.
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6% sequencing gel mix: 210 g urea

74 ml Rotiphorex 40 (acrylamide)

50 ml 5x TBE

Dissolved in 500 ml in H2O

The solution was filtered and stored in dark at RT

To 50 ml of gel mix, 30 µl of TEMED and 400 µl of 10% APS was added and

the mix was carefully poured into the space between the two plates avoiding bubbles

and leakage. After polymerization, a pre-run was conducted with 0.5% TBE buffer for

10 min at 3000 V before loading the probes. 3-4 µl of the probes were loaded and

electrophoresed for 1.5 hours at 2500 V / 300 mA / 300 W until the bromophenol blue

front reached the lower buffer tank.

The gel was separated from the plates on a sequencing filter paper (Bio-Rad).

After drying on a gel dryer the gel was exposed to a phospor imager screen overnight

and scanned on phospor imager.

2.4 Techniques related to protein

2.4.1 Preparation of protein extracts

For the preparation of protein extracts from cell lysates, cell density was

monitored spectroscopically at 600 nm (OD600nm), culture volumes corresponding to

OD600nm values of 5 or 10 were harvested, and cells were isolated by centrifuging at

4°C. This procedure ensured that comparable amounts of cells were withdrawn for

protein extract preparation even when cells of different growth stages had to be

compared. The isolated cell pellets were lysed either by sonicating or by lysozyme

treatment. For sonication, cells were resuspended in 400 µl of ice cold water

supplemented with 1 mM of EDTA and PMSF as protease inhibitors. Cells were

repeatedly (6 times) sonicated for 30 sec on ice using a sonicator. Between each

repetition cycle, a 1 min pause was applied. The sonifier was set to deliver 80 %

power, with a 25 % cycle. For cell lysis by lysozyme treatment, the cell pellet was

resuspended in a lysis buffer (50 mM EDTA, 0.1 M NaCl, pH 7.5) containing 50
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µg/ml of lysozyme and incubated for 10-15 min at 37°C until the dense solution

started clearing.

Independent of the cell lysis method applied, the cell lysates were centrifuged

to remove the cell debris. An aliquot of each lysate was stored at -20°C for future

purpose and 100 µl of the lysates were boiled with the denaturing protein loading

buffer and equal volumes of these samples were loaded on a SDS gel for inspection of

whether the protein contents were of comparable concentration.

2.4.1 Separation of proteins by SDS-polyacrylamide gel electrophoresis

The protein sample to be resolved was denatured by heating at 95°C for 2 min

in the presence of SDS and β-mercaptoethanol (see protein loading buffer

composition below). While β-mercaptoethanol reduces disulfide bonds, SDS

denatures and anneals to the amino acid chains of the proteins giving each protein a

negative net charge that is proportional to the polypeptide chain length. As a

consequence, the proteins are separated essentially based on their molecular mass

(Laemmli, 1970). The sieving effect of the gel matrix is achieved by adjusting an

appropriate ratio of acrylamide to N, N’ methylene bisacrylamide (37.5/1). The

polymerization of acrylamide is catalyzed by 0.1% APS (w/v) and 0.05% TEMED.

The migration of the proteins was carried out in running buffer under a constant

current of 25 mA for 2 h.

Loading buffer: 100 mM Tris/HCl, pH 6.8

10 % (v/v) glycerol

2 % (w/v) SDS

3 % (v/v) β-mercaptoethanol

0.1 % (w/v) bromophenol blue

Running buffer (Laemmli): 25 mM Tris/HCl, pH 8.3

250 mM Glycine

0.1% (w/v) SDS

Table 10: Composition of gel for SDS-PAGE
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compounds separating gel (10ml) stacking gel (5ml)

10%          7.5% 4%

acrylamide/bisacrylamide 3.33 ml 2.5 ml 0.66 ml

separating buffer

(1.5 M Tris/HCl, pH 8.8)

2.5 ml 2.5 ml  -

stacking buffer

(0.5 M Tris/HCl, pH 6.8)

      -       - 1.2 ml

distilled water 4.0 ml 4.8 ml 3.01 ml

1% SDS 100 µl 100 µl 50 µl

10% ammonium persulfate 50 µl 50 µl 25 µl

TEMED 5 µl 5 µl 5 µl

*The volume corresponds to 2 gels, each of size: 8 cm x 10 cm x 0.1 cm

2.4.2 Protein staining with Coomassie blue

After electrophoresis, the proteins in the gel were fixed and stained in staining

solution with gentle agitation for 1-2 hours. In order to remove non-specific dye from

the protein gels, the gel was destained in the destaining solution.

staining solution: 0.125% (w/v) Coomassie blue

10% (v/v) acetic acid

25% (v/v) ethanol

destaining solution: 10% (v/v) acetic acid

20% (v/v) ethanol
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2.4.3  Western blotting

For the detection of specific proteins on protein gels, a technique termed

western blot was applied in which the protein bands were first transfered to a

polyvinylidene fluoride (PVDF) 0.45 µm microporous membrane (Immobilon-P,

Millipore). An air bubble-free sandwich was formed from Whatman 3MM filter

papers embedding the membrane and the gel. All components were presoaked in

transfer buffer and the electro transfer was carried out in a semi dry transfer system

(Sigma-Aldrich) for 90 minutes under a constant current calculated by the area of the

gel (in cm) multiplied by 0.8 mA. After transfer, the proteins were visualized by

staining the membrane with amido black solution for 1-2 minutes and destaining with

dH2O.

transfer buffer: 48 mM Tris base

39mM glycine

1.3mM SDS

20% methanol, pH 9.2

amido black solution: 0.1% amido black

25% isopropanol

10% acetic acid

2.4.3.1  Immunodetection

After transferring the proteins to a PVDF membrane, the non-specific sites

were blocked by incubating the membrane in blocking buffer for 30 min at RT. The

membrane was then incubated in blocking buffer with a defined dilution of the

primary antibodies (see below) overnight at 4°C or for 1 h at 37°C. The membrane

was washed to eliminate the unbound antibodies, once for 10 minutes and twice for 5

min with PBS-T at RT. The membrane was then incubated in blocking buffer with the

secondary antibody coupled to horse-radish peroxidase (1:10000 dilutions of anti-

rabbit or 1:5000 of anti-mouse) for 1 h at 37°C. The membrane was washed again as

described earlier to eliminate the unbound secondary antibodies. The proteins

recognized by the primary antibodies were detected using ECL (enhanced

chemiluminescence).
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PBS-T: 80 mM Na2HPO4

20 mM NaH2PO4

100 mM NaCl, pH 7.5

0.2% (v/v) Tween-20

primary antibody dilution:

Rabbit anti SMC 1:1000

Rabbit anti ScpB 1:1000

Rabbit anti GFP 1:1000

Mouse anti His 1:1000

secondary antibody dilution:

Goat anti Rabbit IgG,

peroxidase-conjugated 1:10000

Goat anti Mouse IgG,

peroxidase-conjugated 1:5000

2.4.3.2  Chemiluminescence-detection of proteins on nitrocellulose

membrane

Immunolabeling was visualized by adding the luminol and H2O2 to the

peroxidase-conjugated antibodies. The reaction was carried out in the dark by mixing

two solutions:

solution1: 100 µl of 250 mM luminol

44 µl of 90 mM coumaric acid

1 ml of 1M Tris-HCl pH 8.5

add H2O to give 10 ml

solution 2: 6 µl of 30% H2O2

1 ml of 1M Tris- HCl pH 8.5

add H2O to give 10 ml

The membrane was soaked for 1 minute in solution mix and luminescence was

recorded by exposing the blots to an X-ray film for 5-30 min.
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2.4.4 Purification by strep-tactin column

This purification procedure is based on the affinity of the so-called Strep-Tag

II towards strep-tactin. The Strep-Tag II is a short peptide ‘WSHPQFEK’ which binds

specifically to an engineered strep-tactin. The column material was provided by IBA.

The column was equilibrated with buffer W (2.5 ml, rinsed twice) and thereafter 3-5

ml of the cell lysate were loaded on the column and allowed to flow through the

column. Once the tagged protein has bound specifically to the column, the unspecific

proteins were rapidly washed away with 5 times 1 ml of buffer W. The proteins were

eluted with 3 times 5 ml of buffer E containing the specific competitor desthiobiotin

and fractions of 0.5 ml were collected. The column was regenerated with 3 times 5 ml

of buffer R, containing HABA (hydroxyazophenyl benzoic acid) that displaces

desthiobiotin and regenerate the column.

buffer W: 100 mM Tris-Cl, pH 8.0

1 mM EDTA

buffer E: 100 mM Tris-Cl, pH 8.0

1 mM EDTA

2.5mM Desthiobiotin

buffer R: 100 mM Tris-Cl, pH 8.0

1 mM EDTA

1 mM HABA
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2.5 Bacillus genetics

2.5.1 Preparation of chromosomal DNA from Bacillus subtilis cells

Cells from 2 ml overnight culture was harvested and resuspended in 0.5 ml of

lysis buffer (50 mM EDTA, 0.1 M NaCl, pH 7.5) and incubated with 1 mg/ml

lysozyme for cell lysis. The lysate was then extracted once with phenol and then with

phenol:chloroform (1:1). Chromosomal DNA was precipitated by adding 40 µl of 3 M

sodium acetate and ethanol. The precipitated DNA was spooled with a Pasteur pipette,

and washed by dipping in 70% EtOH, it was then air dried before dissolving it in TE

buffer, pH 8.

2.5.2 Preparation of competent Bacillus subtilis cells

B. subtilis develops a competent state at the onset of stationary growth phase

during which exogenous DNA is trapped and processed to yield single-stranded DNA

in cytoplasm. Through recombinational and replication processes such DNA is either

established as a plasmid or integrated into the genome where homologous sequences

are present (Dubnau, 1991). Preparation of competent B. subtilis cells is based on a

modified two step procedure from Dubnau and Davidoffabelson (1971) and requires

cells growing in SpC medium until the cells enter the stationary growth phase where

they become naturally competent.

Overnight cultures were used to inoculate in 20 ml of freshly prepared SpC

medium. Growth was maintained until the cells reached the stationary phase. When

the OD600 remained unchanged for 20-30 min, the culture was diluted 1:10 into pre-

warmed SpII medium and allowed to grow for 90 min. The cells were then pelleted by

centrifugation at RT and  resuspended in a mixture of 20 ml of supernatant containing

10% glycerol and aliquoted for storage at -80°C.
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T-Base : per litre

2 g (NH4)2SO4

18.3 g K2HPO4·3H2O

6 g KH2PO4

1 g trisodium citrate·2H2O

Sterilized by autoclaving at 121°C at 1.5 bar for 30 min.

SpC Medium:

T-Base 20 ml

50 % (w/v) glucose 0.2 ml

1.2 % (w/v)  MgSO4·7H2O 0.3 ml

1 % (w/v) casamino acids 0.5 ml

10 % (w/v)  bacto yeast extract 0.4 ml

SpII medium:

T-Base 200 ml

50 % (w/v) glucose 2 ml

1.2 % (w/v)  MgSO4·7H2O 14 ml

1 % (w/v) casamino acids 2 ml

10 % (w/v)  bacto yeast extract 2 ml

0.1 M CaCl2 1 ml

SpC and SpII media were prepared fresh from the sterile stock solutions and sterile

filtered.

2.5.3 Transformation of Bacillus subtilis

100-200 µl of competent Bacillus subtilis cells were used for each

transformation. Two different dilutions of the plasmid DNA (5 µl and 15 µl from

normal plasmid mini-prep) or the chromosomal DNA (0.05 µl and 0.5 µl) were mixed

with the competent cells in a culture tube and incubated at 37°C for 20-30 min in a

roller drum. The cells were then plated on selective plates and incubated overnight. In

case of temperature sensitive mutants the transformation was carried out at room

temperature or 25°C for 30-40 min incubation.
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2.5.4 Screening for gene integration at the amylase (amyE) locus

In order to screen the Bacillus subtilis transformants for the gene integration at

the amyE locus, the clones were tested for their inability to utilize starch from the

medium. A fraction of each of the Bacillus transformant colonies were picked from

the master plate and were streaked in small patches on a LB-starch plate (with 1%

(w/v) soluble starch) and LB plate supplemented with the appropriate antibiotic which

served as a replica plate. After incubation overnight, the LB starch plate was tested by

spreading 1-2 ml of Lugol’s iodine solution and after approx. 1 min. Iodine present in

the solution intercalates in the starch molecules and turns into blue. The test plate was

examined for the non blue-halo zone around each colony. Those clones that showed

‘halo’ possessed the intact amylase gene and the ones without had the amylase gene

disrupted by the integration of the transformed gene.

2.5.5 Promoter induction in Bacillus subtilis

0.5-1 mM of IPTG was used to induce all Pspac derived promoters and 0.5%

(w/v) of xylose for Pxyl promoters.

2.5.6 PCR knockout technique for Bacillus subtilis

This technique involves gene disruption/deletion, using a PCR fragment

carrying the resistance gene with the flanking sequences of the gene of interest. The

procedure involved three rounds of PCR as illustrated in fig. 8a. In the first round,

approx. 1 kb of the upstream and the downstream region of the gene of interest were

amplified using the primers P1, P2 for upstream fragment and P3, P4 for downstream

fragment. The primers P2 and P3 had approx. 19 bp homology to the resistance gene

(e.g. the tet cassette). In the second round, the products form the first step PCR

reaction were used as primers to PCR-amplify the resistance marker (tet gene was

obtained from pSG1515 digestion). The resulting product was boosted in a third

round using the primers P1and  P4. The final product was visually inspected on an
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agarose gel for the expected product and then transformed into Bacillus subtilis,

selecting on the appropriate antibiotic (tetracycline).

Fig. 8a: Schematic representation of PCR knockout method:

Fig. 8b: Program used for the II and III rounds of PCR reaction:
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2.6 Microscopic techniques
2.6.1 Fluorescence microscopy – Principle

Fluorescence microscopy is a useful tool to examine the location or

concentration of molecules in vivo and can be performed with high sensitivity and

specificity. The ability to view activities of proteins within a single living cell began

with the discovery of a green fluorescent protein (GFP) from the jellyfish Aequoria

victoria. The use of this protein has allowed for insight into the microscopic cell

world (Gordon et al., 1997; Lemon and Grossman, 2000; Margolin, 2000; Phillips,

2001; Li et al., 2002; Southward and Surette, 2002). The green fluorescent protein

(GFP) has the shape of a cylinder, comprising 11 strands of β-sheet with a α-helix

inside and short helical segments on the ends of the cylinder. The fluorophore is

protected inside the cylinder and its structures are consistent with the formation of

aromatic systems made up of Tyr66 with reduction of its C - C bond coupled with

cyclization of the neighbouring glycine and serine residues. These side chains, when

modified, change the spectral properties of GFP (Yang et al., 1996). The presence of

different spectral properties of fluorescence has allowed for simultaneous labelling of

different proteins in the cell. Some of the GFP variants used in this work and their

spectral details are presented in table below:

Table 11

GFP variants  Excitation
/emission
 (nm)

a.a substitutions in wtGFP

GFPmut1 488/507 2

BFP 380/440 4

YFP 513/527 4

CFP 433/ 475(major)
453/ 501(minor)

6

Fluorescent microscopes are based on the principle that a high-energy, short-

wavelength light excites electrons within certain molecules inside a specimen, causing

these electrons to shift to an energetically elevated state. When they fall back to their

original energy levels, lower-energy, longer-wavelength light in the visible spectrum

is emitted. The fluorescent microscope possesses a light source (xenon lamp) that

emits a broad spectrum of light. A filter is used to allow only certain wavelengths of
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light to pass into the microscope. The light of these wavelengths is focused on the

specimen to be studied through a lens. When the proper wavelength of light hits the

specimen, the fluorescent protein (e.g. GFP) that might be attached to a cells natural

protein begins to glow. The hereby emitted light goes back through the lens, which

also contains an emission filter that enables the appropriate image to be seen through

the microscope’s eyepiece or by a camera that create a digital image on a computer

screen. A dichroic beam splitter attached to the microscope allows selecting the

proper wavelength to pass through. The emitted light is always produced at a longer

wavelength than that originally absorbed (stokes shift). This shift is crucial for the

detection of fluorescence as it differentiates the excitation and the emission

wavelengths (Emptage, 2001).

The interactions of proteins can be visualized in vivo using fluorescence

resonance energy transfer (FRET) technique. FRET is a distance-dependent effect

between two interacting molecules (e.g. FP-tagged proteins) in which the excitation

energy of one molecule (the donor) can be transferred to its partner (acceptor). For

FRET to occur molecules must be at close proximity of within 100 Å and the

absorption spectrum of the recipient molecule must overlap the emission spectrum of

the donor. The use of a pair of proteins of which one is tagged to CFP and the other

tagged to YFP is ideal for FRET and allows for colocalization studies (Emptage,

2001).

In this work, fluorescence microscopy was performed on Olympus AX70

microscope. Images were acquired with a digital micromax CCD camera, signal

intensities and cell length were measured using the MetaMorph 4.6 program

(Universal Imaging). The shape of the cell/nucleoid was examined in bright field light

using Nomarski differential interface contrast which resolves different refractive

indices.

2.6.2 Vital stains used in fluorescence microscopy

DAPI (4', 6-diamidino-2-phenylindole) is a blue fluorescent nucleic acid stain

that preferentially stains double-stranded DNA (dsDNA). This stain was used to

visualize the nucleoid. DAPI attaches to AT clusters in the DNA minor groove.

Binding of DAPI to dsDNA produces an approximate 20-fold fluorescence
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enhancement, apparently caused by the displacement of water molecules from both

DAPI and DNA. The excitation maximum for DAPI bound to dsDNA is 358 nm, and

the emission maximum is 461 nm. DAPI was used at a final concentration of 0.2

ng/ml to visualize the nucleoid in the cell.

Syto59 is a cell-permeate red fluorescent nucleic acid stain that exhibits bright,

red fluorescence upon binding to nucleic acids. It absorbs at 622nm and emits at

645nm which allowed for simultaneous visualization of protein tagged to BFP and the

nucleoid.

FM4-64 (N-(3-triethylammoniunpropyl)-4-(p-diethylaminophenylhexatrienyl)

pyridinium dibromide) is a lipophilic styryl dye with red fluorescence

(excitation/emission spectra approx. 515/640 nm). The stain intercalates into the outer

surface of the membrane but is unable to cross the lipid bilayer, therefore only the

membrane surface which is directly exposed to the FM 4-64 is stained. FM4-64 was

used to simultaneously view the localization of proteins tagged to FP with respect to

the cell boundary at the final concentration of  2.5 µg/ml.

2.6.3 Media used for microscopy

The cells were visualized live under the microscope after being grown in a

specialized S750 minimal medium that had low level of background fluorescence.

S750 minimal media: The media was prepared fresh, from stock solutions (table12)

and sterile filtered

Table 12

Stock solutions Final concentration

10x S750 salts 1x S750 salts

100x metals 1x metals

50% glucose* 1 % glucose*

10 % glutamate 0.1 % glutamate

casamino acids 40 µg/ml

dH2O to 1 l
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* glucose was substituted with fructose for cultures consisting of strains that had

genes with xylose inducible promoters because presence of glucose represses xylose

uptake.

10x S750 salts: MOPS (free acid) 0.5 M (104.7 g)

(NH4)2SO4  100 mM (13.2 g)

KH2PO4  50 mM (6.8 g)

pH 7 adjusted with KOH  dH2O  to 1 l

100x metals: MgCl2  0.2 M

CaCl2  70 mM

ZnCl2  0.1 mM

MnCl2  5 mM

2.6.4 Preparation of slides for microscopy

In order to visualize live cells under the microscope, 2-3 µl of growing cell

culture were applied on the agarose coated slide and covered with a cover slip. Slides

were prepared by spreading 800 µl of 1% agarose in S750 medium and covering with

another glass slide such that a thin uniform layer is formed between them. After the

medium solidified one of the slides were carefully separated, such that the agarose

film is retained on one of the slide surface.
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3. Results

3.1 Identification of SMC- interacting proteins - Historical observations

As described in more detail in the introduction (1.4), SMC proteins play a

crucial cellular role in chromosome condensation and segregation. Disruption of smc

led to growth impairment, temperature a sensitive phenotype and cells with a

decondensed nucleoid. Based on EM studies, SMC proteins were shown to form

dimers (Melby et al., 1998). In eukaryotes, SMC formed heterodimers and interacted

with other non-SMC components to form a complex. The functional SMC homolog

MukB in E. coli was also shown to interact with two non-SMC proteins, MukE and

MukF. At the beginning of this work, no such interacting proteins were known for

SMCs in other bacteria.

Immunoprecipitation experiments employing SMC antibodies first carried out

by Alex Strunnikov (NIH, USA), suggested the presence of some SMC-interacting

proteins in cell-free extracts prepared from B. subtilis (personal communication).

However, this observation was not further recognized until the publication of

bioinformatic results from Jörg Soppa who, while analyzing the Halobacterium

salinarum genome, identified a gene encoding a homolog of SMC which was located

in an apparent operon with a downstream gene. This encoded protein was highly

conserved in all bacterial species containing a putative SMC homolog (Soppa, 2001).

The corresponding candidate in B. subtilis was identified as a gene that was

previously designated ypuG by the B. subtilis genome consortium and is found in an

operon with two downstream genes, ypuH and ypuI (fig.10):

Fig. 10: Genetic organization of the ypuGHI operon. Numbers indicate the gene
position in B. subtilis genome.



Results

58

The importance of ypuG and ypuH was initially noted during sequencing of

the B. subtilis genome. While ypuI could be disrupted by single crossover integration

of an appropriately constructed plasmid, conditional shut-down of ypuG or ypuH

expression abolished growth of the respective mutants at 37°C which led to the

assumption that both of these genes are essential in B. subtilis (Vagner et al., 1998).

However no additional studies were carried out at that time.

3.2 Phenotypic analysis of ypuG and ypuH

In order to understand the function of proteins coded in the ypu operon by the

genes ypuG, ypuH, and ypuI, a detailed phenotype analysis of the three individual

gene knock-out mutants was initiated. A strategy for systematic deletion of each of

the three genes as well as for the construction of a combined ypuGH deletion strain

was developed. Early attempts to create conditional single-crossover disruption

mutants using the pMutin2 vector system (Vagner et al., 1998) resulted in rapid

mutant to wild type reversions. Therefore, stable deletions were constructed by

replacing 70-80% of the gene of interest with a tetracycline resistance cassette which

was integrated into the chromosome by double-crossover using a PCR knockout

method (Kuwayama et al., 2002) (see Materials and Methods 2.4.10). The constructed

deletion strains were confirmed by PCR using primers locating up and downstream to

the genetically modified region (data not shown).

While the ypuI null mutant PG31 (ypuI::tet) grew indistinguishable from wild

type cells, the ypuG and ypuH null mutants JM11 (ypuG::tet) and JM12 (ypuH::tet),

showed a phenotype quite similar to a smc null mutant. This phenotype included

temperature sensitivity, i e., cells did not grow above 23°C, and displayed 2-2.5 fold

reduced cell doubling times compared to the wild type (table13). In addition to this,

both strains grown at 23°C in LB medium contained decondensed nucleoids and

formed 12-15% anucleate cells:
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Fig. 11: Fluorescence microscopic images of (A) wild type, (B) JM11 (ypuG::tet),
(C) PG32 (ypuH::tet) and (D) JM12 (ypuGH::tet) cells stained with DAPI and FM4-
64 stain to view DNA and membrane respectively. Images B and D are DNA stained
visualized in Nomarski.

To rule out that the phenotype of deletion of ypuG is due to a polar effect on

ypuH. The strain JM10 (Pxyl ypuH-cfp at amyE locus) was constructed, in which a

GFP tagged version of YpuH was expressed under the control of the xylose promoter

at the amylase (amyE) locus that fully complemented the deletion of the ypuH gene

when grown in xylose containing medium. Deletion of ypuG in JM10 in the presence

of xylose still led to a segregation and condensation defect and temperature sensitive

slow growth phenotype similar to that of JM11 cells. Showing that both YpuG and

YpuH are essential for proper chromosome condensation and segregation.

The combined deletion mutant strain JM13 (ypuGH::tet), in which both ypuG

and ypuH had been replaced by the tetracycline resistance gene did not further

exacerbate the phenotype observed for the single deletion mutations. When the two

single deletions, ypuG and ypuH, were separately combined with a conditional smc

deletion strain EP58 (smc::kan, Pspac-smc: amyE), the strains JM19 (ypuG::tet,

smc::kan, amyE::Pspac-smc) and PG43 (ypuH::tet, smc::kan, Pspac-smc::amyE) grew

similar to the smc deletion strain as long as IPTG was absent. These observations

show that like SMC, YpuG and YpuH are involved in chromosome condensation.

A B

C D

DNA membrane Nomarski/DNA
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It has been reported that combination of spo0J (whose deletion results in

formation of ~1 % anucleate cells but wildtype like growth) and the smc mutant

exacerbates the phenotype of the smc deletion mutants (Britton et al., 1998). To see if

ypuH has a similar effect, ypuH mutant was combined with spo0J in PG39 strain. The

cells showed 25-35% increase in anucleate cell formation as well as reduction in

growth rate when compared with ypuH mutant alone (table 13), suggesting the

possibility of partial functional overlap between smc and ypuH.

It has also been reported that smc mutants are synthetically lethal with a

spoIIIE deletion (Britton and Grossman, 1999). When ypuG or ypuH mutants where

combined with spoIIIE mutant, the double mutants of ypuG or ypuH with spoIIIE

were temperature sensitive and grew much slower than their single mutants and smc

mutant (table 13):
strain doubling time (min) anucleate cells (%)

PY79 (wt) 92 < 0.01

 PG31 (ypuI) 98 < 0.01

JM11 (ypuG) 196 11

JM12 (ypuH) 224 12

JM13 (ypuGH) 228 11

PG 388 (smc) 386 12

JM19 (smc, ypuG) 385 11

PG43 (smc, ypuH) 388 13

PG39 (ypuH, spo0J) 267 28

PG36(ypuI, spoIIIE) 96 < 0.01

PG37 (ypuG, spoIIIE) 463 < 1

PG38 (ypuH, spoIIIE) 448 1

Table 13: Doubling times of wild type PY79, smc null mutant, null mutants from
ypuG, ypuH, ypuI, ypuGH and combinations with smc, spo0J, and spoIIIE null
mutants grown at 23°C in LB medium.

 In conclusion, all the above results suggest that the gene products of ypuG and

ypuH are involved in a similar cellular function as smc and belong to the same

epistatic group. However, the influence of SMC seems to be more prominent than

YpuG and YpuH.
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So far, the ‘y’-genes ypuG and ypuH were of unknown function, based on the

observations described above and their apparent role in chromosome condensation

and segregation, they were renamed as ScpA and ScpB respectively. ‘Scp’ stands for

‘segregation and condensation protein’ or proposed ‘SMC complex protein’.

3.3 ScpA and ScpB - A new family of conserved proteins

To analyze the relationship of ScpA (MW: 29.5kDa; pI: 4.8) and ScpB (MW:

22kDa; pI: 4.3) and their occurrence in other organisms, the protein sequences were

used to perform a similarity search using a BLASTP internet server at NCBI (Altschul

et al., 1997). The results of the BLAST analysis showed that both of the sequences are

conserved among bacteria and archaea. ScpA was identified in all bacterial organisms

possessing SMC, while ScpB, if present, was found in all organisms possessing ScpA

and SMC-like sequences.

The ScpA sequence showed acid-rich sequences between residues 80 to 120

(fig. 12, shown in black bar), and is conserved only in the closely related Bacillus

species and in archaea which indicate that ScpA might be involved in interaction with

other protein or DNA. The C-terminal region of ScpA showed 40-46% similarity to

eukaryotic Rad21, Rec8, and Scc1 families, a subunit of cohesin complex.
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Fig. 12:

                        10        20        30        40        50        60        70        80

                        |         |         |         |         |         |         |         |
B. subtilis    MEEYQVKIDTFEGPLDLLLHLINRLEIDIYDIPVAKITEQYLLYVHTM-RVLELDIASEYLVMAATLLSIKSRMLLPKQEEELFEDELL
B. halodurans  MNPYSVKLDTFEGPLDLLLHLINQAEVDIYDIPVALITEQYMAYIHTM-QELQLDVASEYLVMAATLLQIKSKMLLPKQEEIFDETFEY
S. aureus  DIMYEVKLDAFNGPLDLLLHLIQKFEIDIYDIPMQALTEQYMQYVHAM-KQLEINIASEYLVLASELLMIKSKMLLPQSTSDMDVD---
S. pneumoniae  ---MDIKLKDFEGPLDLLLHLVSKYQMDIYDVPITEVIEQYLAYVSTL-QAMRLEVTGEYMVMASQLMLIKSRKLLPKVAEV-TDL---
P. aeruginosa  ---MEVFLEAFEGPLDLLLYLIRKQNIDILDIPVAEITRQYMGYVELM-KAVRLELAAEYLVMAAMLAEIKSRMLLPRSAEAEEEE---
N. meningitid  PDALKVVLSSFQGPLDLLLYLIRKQNIDVLDIPMVKITEQYLHYIAQI-ETYQFDLAAEYLLMAAMLIEIKSRLLLPRTETVEDEE---
T. palladium   VPVQEFKLSQFEGPLDLLLFLIKKNELSIYDIPICEITAQYLQYVDQT-VSPDLRGLTEFYAMAAVLLYIKSCMLLPMELDLDGED---
S. coelicolor  -----MRLANFEGPFDLLLQLISKHKLDVTEVALSKVTDEFMAHIRAMGPDWDLDQTTEFLVVAATLLDLKAARLLPAAEVEDEAD--L
M. tuberculos  SAGFRVRLTNFEGPFDLLLQLIFAHQLDVTEVALHQVTDDFIAYTKAIGARLELEETTAFLVIAATLLDLKAARLLPAGQVDDEED--L
T. maritima    -MDLVFKLPVFEGPLDLLLYLVRKKKVDIREIPISQLADEFVEYLEHM-KKLDMKITSDFLEMASTLMELKSKMLIPRVREEKES----
C. crescentus  GAALVIDIDGYEGPLHVLLALARSQKVDLLQLSITRLAEQYLAFVQQA-RRVRFALAADYLVMAAWLAYLKSRLLLPKPERAKAEE--P
P. abyssi      ----MERFEPEVTPVDILLQLVKMGKVDPWNIDIVDLTEKYIKMLREM-QELDLRISARAILAASILVRMKSEALLREDEERNEEEKEE
M. jannaschii  ---MIDSNFDIVLWVRMIKEGIEKKNLNPWDVNIAEIADYYIQKIKEL-KKFDIRLSADVILVAGILLRMKSEALYDECKVEEEEDYDY
A. fulgidus   --------------------MAKRGEIDPWNIDVVDVTDRFLKRIEDA-KKLDLRVSGRVLLYAAILVRMKAEAITLEALGGDEEEELE

               90       100       110       120       130       140       150       160       170
               |         |         |         |         |         |         |         |         |
B. subtilis    EEEDPREELIEKLIEYRKYKDAAKDLKEREEERQKSFTKPPSDLSEYAKEVKQSEQKLS-VTVYDMIGAFQKVL-KRKKINRPMETTIT
B. halodurans  EEEDPREELMFRLIEYRRYKEAAQELKEKEGERSQVHTRLPDNLDDYLTEEERQRQSIQGVTLFDMLAAYQKLL-KRRAYSRPRTSTVK
S. aureus      --DDPREDLVGRLIEYQNYKEYTAILNDMKEERDFYFTKRPTDLSHLETDESWDPNHT--IDLTELIVAYQRVK-NRVELNTPKSVEIR
S. pneumoniae  -GDDLEQDLLSQIEEYRKFKLLGEHLEAKHQERAQYYSKAPTELIYEDAELVHDKTTI------DLFLAFSNILAKKKEEFAQNHTTIL
P. aeruginosa  --EDPRAELIRRLQEYERFKKAAEDLDELPRVGRDVLVPAVAAPEARARKLLPELALQ------ELMLVMGEML---RRADLFESHQVT
N. meningitid  --ADPRAELVRRLLAYEQMKLAAQGLDALPRAGRD-FAWAYLPLEIAVEAKLPEVYIT------DLTQAWLSIL---SRAKHTRSHEVI
T. palladium   -IEDPRQSLVEHLIEYQKYKQLCKLMELYECEDMWCVERKKTQHLFLSPAEVPLLHGD----VRDLLMLFIRLV-----RKTPQWIMDL
S. coelicolor  ALLEARDLLFARLLQYRAYKQIAEIFNDRLEAEARRHPRTVGLEPHHAELLPEVVISI----GPEGFAKLAVKAMQPKPRPQVYVEHIH
M. tuberculos  ALLEVRDLLFARLLQYRAFKHVAEMFAELEATALRSYPRAVSLEDGFVGLLPEVMLGV----DAHRFAEIAAIALTPRPAPTVATEHLH
T. maritima    -IDRKKEELYRRIEEYSKVKEIVSILKKEENLLKRKRVRVRNVFFEKIEGIEKFR---------EILKRIWK-----EEAMREAVHRVK
C. crescentus  PAEEMAAQLAFRLAKLDVMRKAVEALKERPILKRDVFTRGDPDAVKIVSSTRLEGDLY------GLMSAYITQRKREHSRHYAPRPPTA
P. abyssi      RIRVEVDPLVPPLRRVERYYTLDDLIEALMDALEEAERRKPRKKKKVEIEEEIFV----------VDDF--RVDIEKHVNRLYEIVKEI
M. jannaschii  CDDYYDYDDIEEKPKKGKKKEKED KDKN----KKSKKPVTVDELIKTIEKELNK----------VKKS--RKNREKKTNEVEEIIEEL
A. fulgidus   MYDYDSFYFLDEPLEFPEEVDEEELDEVILEALTSMRRRVRKITTLKDLIDELRR----------AEEVERRRRRRRRRERQEEVGIDA

                180       190       200       210       220       230       240       250       260
                 |         |         |         |         |         |         |         |         |
B. subtilis     RQDIPIEARMNEIVHSLKSRG--TRINFMDLFPYEQK----EHLVVT-FLAVLELMKNQLVLIEQEH-NFSDIYITGSESIHGA--
B. halodurans   VEEYSIDERMTDILMDLEKCN--GKCRFQDLFVEKGR----GHMVVT-FLAMLELMKTDAIYCEQNE-NFADIWIYRREGKNRD--
S. aureus   KETFTIQQATEQVTSRLKDKD---HFNFFSLFTFSEP----IEQVVTHFLAILEMSKAGIINIEQQR-NFEDINIIRGVNYHFG--
S. pneumoniae   RDEYKIEDMMIIVKESLIGRD---QLRLQDLFKEAQN----VQEVITLFLATLELIKTQELILVQEE-SFGDIYLMEKKEESQV--
P. aeruginosa   REVLSTRERMSEVLERLKGGA---FVPFIQLFTLEEG----KLGVVVTFMAILELVKEQMVELVQNE-AFGAIHVRLRIAREAE--
N. meningitid   KETISVRAQMTAILRRLNKHG---ICRFHDLFNPEQG----AAYVVVNFIALLELAKEGLVGIVQEV-GFGEIRISLNHEGAHS--
T. palladium    YEEVSVNEKLTLLSELLGVRG---RCVFTELIKQPSR----AD-VVCAFVAILEAAKTHLVHISQPE-FFGPITLYAREVSPKV--
S. coelicolor   APLVSVQEQAGIVVARLKELGE---ASFRVLVQDTED----TLTVVARFLALLELYREKAVELDQET-ALGDLLVRWTGGDGEA--
M. tuberculos   ELMVSVPEQAEHLLAMLKARGSGQWASFSELVADCTA----PIEIVGRFLALLELYRTRAVAFEQSE-PLGALQVSWTGDDAER--
T. maritima     SETLSVEEMMERILDEIDGE-----IEILRLLSRAEN----VYELIVRLLAILELVKIGKLILVGDD-RIRRYTNAAQGRY-----
C. crescentus   YPLEDARDRLRGLLPKMEDWTVLTSVAPIDRVLEEDDGPSPASYLASTLSASLELVKEGVLEARQLE-AFQDIYLRTRAEPLEI--
P. abyssi       YNETGKPIRFWDLVFDVDPKI-----------------------IARTFLYLLFLENMGKVEMIQEE-PFGEKLVVPVKIS-----
M. jannaschii   IEEDDISDIIAELLDDLMKEGI----------IVYQEKFKTREDRVRYFIPSLYLANDGKAELIQEK-LFGELIIKLKSF------
A. fulgidus    ALRVPHEESLEEMIARVEREVFEALRKKDTVTLFSLVKSWDVPTLVDYYVSVLHLAFRKKVEIRQEE-FYGDVEIQKF--------

Fig. 12 (above) and 13A (below) are the sequence alignment of ScpA and ScpB from
archaea and eubacteria. Organisms: Bacillus halodurans, Staphylococcus aureus,
Streptococcus pneumoniae, Pseudomonas aeruginosa, Neisseria meningitides,
Treponema palladium, Streptomyces coelicolor, Mycobacterium tuberculosis,
Thermotoga maritima, Caulobacter crescentus, Pyrococcus abyssi, Methanococcus
jannaschii, Archaeoglobus fulgidus, Agrobacterium radiobacter, Synechocystis sp.
Invariant residues have black background, conserved residues grey background.
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Fig. 13A:
                        10        20        30        40        50        60        70
                         |         |         |         |         |         |         |
B. subtilis     MGLDIVNWKAIVEALLYAAGDEGLTKKQLLTVLEIEEPELNTIMADVADEYRGDTRG--IELIEYADTYMLSTKKDF
B. halodurans   --MTLKELQAAIEGILFVRGDEGVTLEELCDLLELSTDVVYAALEELRLSYTDEARG--LRIEEVAHAFRLSTKPEL
S. pneumoniae   -----MTYLSQIEALLFVAGEEGLSLRHLASMLSLTPTALQQQLEKLSQKYEKDQHS-SLCLIETANTYRLVTKEGF
P. aeruginosa   NLSDPHELATLLEGILLAAG-KPLSLERLAELFDEAERPEPGQFRDALAILALSCAGRSFELKEVASGYRLQIRERF
N. meningitid   -MTDKISPDALIEAALLTQT-EPLTEKSMRELCVPPLSQD--KLIDVLAQLKTRWQDRALQLVHTQEGWRFQIVQTA
C. crescentus   TELDPLFVERCIEALLFAAA-EPLSDVDLAKRL-----PEGADIAAGIDALRVRYEGRGVELACVAGRWRFQTAADL
S. coelicolor   DGVAALDLKPALEAVLMVVD-EPATEERLAKILQRPRRRIADALRELADEYAV--QGRGFELRLIAGGWRFYSRPEY
A. radiobacter  AEMRWREWMMRVEAVIFASA-EPVSRETLARVV-----GKECSIDLLIDDLREDLQGRPYELVSVAGGWQHRTRPRF
Synechocystis   -----MRLATTIEAILYLQA-KPVAIADLVSISGQEKASVEDALMELM-EDYAHRDSALEIVET-NQGYSLQLRAAF
A. fulgidus    -----MELKKIVEAILFSSS-EPVDARELRKITGKDKVEILNAIGELI-KDYESRDTSIEIIKV-GEKYLMRVKPQY
P. abyssi       --MGLLEDKALVEAALFVAG-RPLSVKELSKALGIKSLDYLEKLIELIASEYSERKSAIEIVKVAGDKWVMQVKQEY

                    80        90       100       110       120       130       140       150
                    |         |         |         |         |         |         |         |
B. subtilis     APYLKKL-IEVPSKGLSQASLEVLAIVS--YKQPITRAEIEEIRGVK-SERILHSLVAKALLCEVGRADGPGRAILYG
B. halodurans   APYFKKLALSTLQSGLSQAALETLAIIA--YRQPITRIEVDEVRGVK-SEKAIQTLTSRLLIKEVGRAQGTGRPILYG
S. pneumoniae   AELLRAYAKTPMNQSLSRASLEVLSIVA--YKQPITRIEIDDIRGVN-SSGALSKLLAFDLIREAGKKDVVGRPHLYA
P. aeruginosa   SPWV-GRLWEERPQRYSRALLETLVLIA--YRQPITRGEIEEIRGVAVNTQIVKTLMEREWIRIVGYREVPGRPAMLA
N. meningitid   FERL-GSLQEQRAPRYSRAVMETLAIIA--YQQPVTRGDIEGIRGVAVSQNVIQTLQDRGWIEVIGHRDTLGKPALWA
C. crescentus   SFLM-TEEREE-PRRLSKAAQETLAIVA--YHQPVTRAEIEAVRGVQASRGTIDVLLELGLIRMRGRRRTPGRPVTFG
S. coelicolor   AAAVEGFVLDGQHARLTQAALETLAVVA--YRQPVSRGRVSAVRGVNCD-GVMRTLLQRGLVEEAGTEPETGA-ILYV
A. radiobacter  ADTIQASAAPTRGTATMLSEFEAMVLMAVGYFQPITRGELSKIFGKEVSRDVMGNLRGAGFIRSGPRSPTPGAPYTYV
Synechocystis   QHLIQDFVPA----DLSTASLRTLAAIA--IKSPLLQTDLIELRGSGAYQQ-VQELVETGFVRK--RKQTEGRSYWLE
A. fulgidus    AEYVERFTVR----EFDRGTLRTLAVIA--LKQPITLAKVAKIRGNKCYEH-VKKLQERGLVKA--EKK--GRSTILT
P. abyssi       SQKVIHLMPK---PELTAGELKTLALIA--YLQPVEQSKIVKLRGSQAYEH-IKRLLEMGLIYA--EPY--ERTKLLG

                     160       170       180      190       200
                      |         |         |         |         |
B. subtilis TTPTFLEQFGLKTLDELPPLPENAEEDVLQEEADLFFENFNQTFEDIK-
B. halodurans TTPQFLDHFGLKSLKELPPLPEDIDESSIGEEADLFFQQMEQGSLFHEE
S. pneumoniae TTDYFLDYMGINHLDELI---EVSAVEPADEEIALFRTQD---------
P. aeruginosa TTKAFLDYFNLKSLDELPPLSA-LREMEPEPEPPVEVAPAAQPPRDDLD
N. meningitid TTATFLSDLRLDGLEELPPLTE-LGELVLPDL--MEMPPTDEEEPEAVP
C. crescentus TTDAFMEHYGLATLADLPGIAE-MKAAGLLEMNLPPGFTVPDPLGLRAG
S. coelicolor TTNYFLERMGLRGLDELPELAPFLPEAEAIEADTLEGVPSFDPDAPDAG
A. radiobacter TTTHFLSTFDMETLRDLPNIEA-LEDAGLLSKTEVAVEAQAEGDSEEE-
Synechocystis   ITDKFHQYFEIDSLP--ADFAEKKPK-----------------------
A. fulgidus TTEEFATYFGLDSAE--PEKIKEALKGYLEAE-----------------
P. abyssi TTEKFAELYGFPEND--PNLIKETFRKVIHAEYEDLVKKLEETESDKKN

Fig. 13B

ScpB:  1    MGLDIVNWKAIVEALLYAAGDEGLTKKQLLTVLE IEEP – ELNTIMADVADEYRGDTRGIE  59
   CD:  2    RMLDKMELKALIEALL FA- GGEPLSL KELAE I LGIVSADAI IDAL AE LKEEYE D- -RGLE  58

ScpB:  60  LI EYADTYMLS TKKDFAPYLKKL I EVPSK- GLSQASLEVLAIVSYKQPITRAEIEEIRGV  118
   CD:  59 LVEVAEGWRLQTKQEYAEYLEKLQEQRPKRELSRAALETLAIIAYKQPVTRSEIEEIRGV 118

ScpB:  119  KSERILHS LVAKALLCEVGRA DGPGRA ILYGTTP TFLEQ FGLKTLDELPPLPENAEEDVL  178
   CD:  119  AVSQVISTLLE R GLI REVGRR DTPGRPYLYGTTE KFLDYFGLDSLDELPDLEELKDAGLL  178

ScpB:  179  QEEADL  184
   CD:  179   SEEDLL   184

Fig13B: Sequence alignment of ScpB with the predicted transcriptional regulator
containing the HTH domain. Conserved residues are with black background.

The conserved domain (CD) search of ScpB using CD-Database showed a

sequence similar to the helix-turn-helix (HTH) motif found in other DNA-binding

proteins that are conserved among bacteria (fig. 13B). Proteins with HTH belong to

the LuxR-FixJ family that constitutes transcriptional activator proteins (Crater and

Moran, 2001). The DNA-binding HTH structural motif is composed of an alpha helix,
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a turn region, and then a second alpha helix. The second or C-terminal alpha helix of

the motif is involved in sequence-specific DNA base interactions and is termed as

recognition helix (Pabo and Sauer, 1992).

3.4  Subcellular localization pattern of ScpA, ScpB and SMC

In order to visualize proteins in the living cell, ScpA, ScpB, and SMC were C-

terminally tagged to the N-terminus of a fluorescent protein (YFP). To construct the

required fusions, the C-terminal region of the scpA and scpB genes were amplified by

PCR and cloned into a plasmid carrying a downstream yfp gene. To ensure that

tagging of the YFP to ScpA caused no disturbance of transcription of ScpB, an IPTG-

inducible Pspac promoter was cloned into the plasmid upstream of ScpA-YFP. The

resulting plasmids were then transformed into PY79, where they integrated at the

original gene locus by single-crossover integration.

The strains JM8 (scpA-yfp) and JM9 (scpB-yfp) were PCR-tested for

successful integration of the transformed plasmid into the chromosome and the

expression of the respective fusion protein was confirmed by western blot analyses

using antibodies against ScpB (fig 14B) and against GFP. Both strains grew in a

manner comparable to the wild type, i.e. there were no anucleate cells and growth rate

was indistinguishable to the wildtype suggesting that the protein fusions served as

functional replacements of their wild type counterparts. Strain JM8 was able to grow

in a similar manner with and without IPTG, inferring that tagging of ScpA to a FP did

not affect ScpB transcription. Likewise, SMC was tagged to a fluorescent protein in a

similar way, except that in this case a glycine linker was introduced between SMC

and the FP according to a technique developed in Hiraga’s lab for fusing E. coli’s

functional SMC homolog MukB to GFP (Ohsumi et al., 2001). This method was

designed to ensure that the folding of the GFP tag does not interfere with the folding

of its N-terminally tagged protein. Integration of this construct into the smc locus

resulted in strain JM20 (smc-gfp) which were temperature sensitive and grew at 25°C

but not at 37°C. When the JM20 cells grown at 25°C were examined by microscopy,

their nucleoids appeared normal, suggesting that the fusion was partially functional.

The observed temperature sensitive phenotype might be due to the process of slowing

down folding of the respective proteins or the disruption in transcription of

downstream gene due to plasmid integration. To construct a fully functional strain, a
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pMutin-YFP vector carrying an IPTG-inducible spac promoter designed to drive

expression of the downstream gene was used to clone in the smc region (Kaltwasser et

al., 2002). The resulting strain JM25 (smc-yfp, Pspac) was able to grow at 37°C in the

presence but not in the absence of IPTG, indicating that tagging of GFP to SMC

abolished the continued transcription of a gene downstream of smc, ftsY, a signal

recognition particle receptor, which serves an important function during the growth

(Oguro et al., 1995).

The strains JM8 (scpA-yfp), JM9 (scpB-yfp), JM20 (smc-gfp), and JM25 (smc-

yfp, Pspac) showed a similar pattern of fluorescent foci at 25°C in S750 minimal

medium. (fig. 15 A, B, C). They localized in a cell cycle-dependent manner where

one or two fluorescent foci were present in the middle of small cells, while in larger

cells (and thus later in the cell cycle) one or two fluorescent foci were present close to

each cell pole of future daughter cell (fig.15). Fluorescence of cells outside of the

protein-YFP foci was similar to that seen in cells that did not carry the fusion,

indicating that most of the protein molecules are present within the foci. The

fluorescence intensity of the foci was brighter in JM8 and JM9 cells when compared

to strain JM25. The similar pattern of localization of all the three proteins and the

genetic analyses showing similar phenotype upon deletion suggest that the three

proteins ScpA, ScpB, and SMC might be involved in a same function and might work

together as a complex.
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Fig. 15: Fluorescence microscopy. (A) JM8 (scpA-yfp), (B) JM9 (scpB-yfp), (Ca)
JM20 (smc-yfp) and (Cb) overlay of JM26 with DAPI stain.

3.5 Dynamic localization of SMC, ScpA, and ScpB

The localization pattern of ScpA, ScpB or SMC proteins seem to differ during

the cell growth. The smaller cells showed 1-2 foci at the mid cell and the larger cells

had 2-4 bipolar foci. To compare the relative positions of the foci during the cell

growth, the location of ScpB was monitored relative to the position of origins of

replication during the cell cycle. A strain PG27 which expressed ScpB-YFP and

possessed LacI-CFP bound to the tandem repeats of lacO cassette near the origin at

359° was used. Cells from this strain showed characteristic bipolar foci of the Ori s

coloured in green (fig. 16). In most cases, ScpB localized close to the origin regions,

often with 2 foci (in red) flanking each origin (fig. 16). In small cells (<1 µm), one or

(A) (B)

(Ca) (Cb)

membrane sta in

YFP tagge d prote in

DNA stain
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two central SMC/Scp foci were flanked by two well separated origin signals (fig. 16).

Later during cell growth, the origins separated and moved apart towards the poles,

which was then followed by SMC/Scp foci movement very close to or coincident with

origin regions (fig. 16, between 1 and 1.24 µm). Due to the limited resolution of light

microscopy, the foci appeared coincident in some cases. These observations confirm

that the SMC complex is not associated with the origin region. Ori regions are

associated with proteins like Spo0J which might inhibit its association with SMC. The

ScpB localization observed under the microscope in the growing cells showed that

bipolar movement of ScpB was not synchronized like the Ori-tag movement. One

ScpB focus was found very close to the origin, while the other remained close to mid

cell, i.e., well separated from the other origin (fig. 16). This observation was vivid

with the microscope time lapse snapshots of the cells (data not shown).

Fig. 16: Fluorescence microscopy of PG27
cells showing localization of ScpB-YFP in
red, origin regions in green and membrane in
blue. Each panel represents the predominant
localization pattern in cells of the respective
size. Cells are shown with increasing size,
and so according to the state within the cell
cycle (Scale bar indicates 2 µm)
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After the origins reached the poles, the Scp foci moved away from the origins

towards the center of each cells halves (fig. 16). This was visible in the larger cells

that had four bipolar origins, while SMC/Scp foci were located towards quarter sites

corresponding to the future middle of newborn cells after cell division and flanked by

the origin foci which are indicative of new rounds of chromosome replication before

cell division (fig. 16). Thus, the mobility of condensation centres appears to be

associated with replication process.

To investigate the association of SMC complex with the replication

machinery, SMC-YFP encoding plasmid was transformed into strain PG28, carrying a

CFP tagged to the C-terminus of the τ subunit of DNA Polymerase III (Lemon and

Grossman, 1998). The resulting strains JM27 (smc-yfp, dnaX-cfp) showed a centrally

located DNA polymerase. SMC foci were adjacent but not coinciding with the DNA

polymerase in smaller cells but the foci were not coincident in larger cells (fig. 17):

Fig 17: Fluorescence microscopy of JM27 (smc-yfp, dnaX-cfp) cells. SMC-YFP is in
green (white arrows) and DnaX-CFP in red (grey arrows).

These observations indicate that in smaller cells, the SMC complex might be

transiently associated with the replication machinery while organizing the

chromosomes for the replication process. Once the chromosomes have started

replicating, the SMC foci might be involved in organizing the newly replicated

chromosomes. Similar pattern of localization was also observed with ScpB-YFP and

DNA Pol III.
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3.6 SMC, ScpA, ScpB are associated with DNA

Biochemically, it has been shown that SMC binds to single-stranded (Hirano

and Hirano, 1998) as well as double stranded DNA (Volkov et al., 2003). SMC,

ScpA, and ScpB were always observed to be present in the nucleoid (fig. 15Cb). To

prove the association of SMC and its complex partners with DNA in vivo, the

chromosomal DNA from JM8 (scpA-yfp), JM9 (scpB-yfp) or JM25 (smc-yfp, Pspac)

were transformed in a spo0J mutant strain (spo0J::spec) and examined for protein

localization in anucleate cells formed as a result of the spo0J deficiency (Ireton et al.,

1994). SMC, ScpA, and ScpB localized as bipolar foci in cells with DNA but did not

show any fluorescence in anucleate cells as seen in fig. 18:

Fig. 18: Fluorescence microscopy of PG39 (scpB-yfp, spo0J-) cells. Arrows show the
anucleate cells.

This observation demonstrates that SMC, ScpA, and ScpB are associated with cellular

DNA.

ScpB-YFP DNA membrane
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3.7 Colocalization of ScpA, ScpB, and SMC

In order to examine whether proteins possess the same subcellular address and

colocalize with each other, they have to be viewed simultaneously in a cell. To

accomplish this, one of the proteins under investigation was tagged to CFP and

combined with strains expressing its potential interaction partner fused to YFP (the

emission spectra of YFP and CFP do not interfere, which allows the observation of

both of the proteins in the cell as long as appropriately selected filters are used). For

the construction of N-terminal fusion of ScpB to CFP, scpB was cloned in a plasmid

that integrated at amyE locus and expressed the fusion protein from a xylose-inducible

promoter. This strain JM10 (amy::cfp-scpB, Pxyl) was able to complement the scpB

mutant and also localized in a similar manner as in JM9 cells but the CFP

fluorescence was weaker when compared to YFP. The strain JM10 was combined

with JM8 (scpA-yfp) and JM25 (smc-yfp) to yield JM14 (scpA-yfp, amy::cfp-scpB,

Pxyl) and PG44 (smc-yfp, amy::cfp-scpB, Pxyl), respectively. When analyzed under

microscope, JM14 cells showed foci for both YFP and CFP that were visible in both

of the filters. Upon overlapping the images, these foci were coincident:

Fig: 19a: Colocalization of ScpA and ScpB in JM14 cells.
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Fig: 19b: Colocalization of ScpB and SMC in JM30 cells.

To colocalize SMC and ScpA, SMC was tagged to CFP in strain JM26 (smc-

cfp) which showed very faint fluorescence foci in the cell. When combined with

ScpA-YFP or ScpB-YFP to yield strains JM29 (scpA-yfp, smc-cfp) and JM30 (scpB-

yfp, smc-cfp) respectively. It was difficult to localize a SMC-CFP fusion in JM29 and

in JM30 cells (fig. 19b). In the rare case where clear CFP and YFP foci were visible,

they were coincident. Moreover, growth was severely impaired in strain JM29 when

compared to JM30. The observation that ScpA and ScpB colocalize with each other

and with SMC supports the idea that they function together in a complex. The rather

poor visibility of fluorescence foci in PG44, JM29, and JM30 cells might be either

due to an interference with proper protein folding or a negative effect mediated by the

fluorescent proteins in complex formation, providing a clue that ScpA and ScpB binds

at the SMC head region, comprising the N- and the C- terminus of SMC.

3.8 Interaction of ScpA, ScpB, and SMC in vivo

In order to verify whether colocalization is equal to a true interaction of ScpA,

ScpB and SMC in vivo, a technique called FRET was employed. The FRET effect

(fluorescence resonance energy transfer) is distance-dependent and requires

interaction between YFP and CFP such that the emission energy of a previously

excited CFP (the donor) is transferred and absorbed to excite YFP (the acceptor).

Under optimal conditions no emission energy spectra from the donor molecule is seen

when examined under the microscope. An efficient energy transfer between YFP and

ScpB-CFP

SMC-YFP

ove r lay
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CFP can occur only if both are at close proximity within 50Å, which requires

interaction of the proteins.

The strains PG41 (scpB::tet, Pxyl-scpB-cfp, scpA-yfp) and PG44 (amy:: Pxyl-

scpB-cfp, smc-yfp) were observed through a special FRET filter that specifically

excited with a CFP wavelength and allowed the observation of the YFP emission,

such that fluorescence was visible only if FRET occurred. When compared to the

control strains PG40 (scpB::tet, Pxyl-scpB-cfp) and JM8 (scpA-yfp) that did not show

any FRET fluorescence (fig. 20 A and B), cells of the combined strain PG41 showed

FRET fluorescence which was seen as bipolar foci, confirming the interaction of

ScpA and ScpB in vivo:

Fig. 20: Fluorescence resonance energy transfer (FRET) analysis.
Fluorescence microscopy of cells grown in the presence of xylose (A) PG40
(scpB::tet,  Pxyl-scpB-cfp at amyE locus), (B) JM8 (scpA-yfp), and (C) PG41
(scpB::tet,  Pxyl-scpB-cfp at Amy locus, scpA-yfp). Cells were observed in FRET and
YFP filters. Arrows indicate the ScpA-YFP foci. Short white bars show the ends of
cells. Scale bar 2µm.
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To confirm the interaction of ScpA and ScpB with SMC, immunoprecipitation

experiments were carried out with strains JM8 (scpA-yfp) and JM9 (scpB-yfp) using a

protein A sepharose column saturated with GFP antibodies. These experiments were

executed by P. Graumann, who observed that the native SMC was co-precipitatable

with JM8 and JM9 cell extracts (Mascarenhas et al., 2002). To investigate whether

any other proteins are involved in the interaction, a strain JM24 (smc-strep) was

constructed in which SMC was tagged C-terminally to a strep tag sequence. Cell

lysate of JM24 from the mid log phase was passed through a strep tactin affinity

column. The benefit of this column is the one step protein purification from a crude

lysate and it also allows the copurification of non-covalently bound ligands. Columns

were separately loaded with cell lysates prepared from strains PY79 and JM24. After

a wash, the eluates from the respective columns were concentrated and analyzed on a

SDS-PAGE gel as well as by western blotting using SMC antibodies. The SDS-PAGE

gel showed several bands in the control lane (probably proteins binding the column

nonspecifically) but there were two unique bands corresponding to the sizes ScpA and

ScpB that were not visible in the control lane, see fig. 21A. The western blot using

SMC antibody detected SMC only in the JM24 eluate, fig. 21B:

Fig. 21(A): SDS-PAGE gel and
(B): Western blot with SMC
antibody on the strep column eluates
from JM24 (smc-strep) and PY79 (wt)
cells.

The addition of avidin to the cell lysate before performing elution of the bound

material from the column might have subtracted proteins bound with weak affinity,

SMC-Strep
(~140 kDa)

ScpA (29 kDa)
ScpB (22 kDa)

SMC-Strep

(A)

(B) JM24 PY79



Results

74

but this was not performed due to the paucity of the material and time. The results

obtained so far from FRET studies and immunoprecipitation experiments confirm that

SMC has ScpA and ScpB as its direct interacting partners.

3.9 Specific localization depends on all three proteins of the complex

To investigate the interdependence of SMC, ScpA, and ScpB localization, one

of the proteins was viewed in the absence of the others. To do so, the chromosomal

DNA from JM8 (scpA-yfp) and JM9 (scpB-yfp) were transformed into JM16

(smc::kan, amy::Pspac-smc, cm::tet) strain that carried SMC under the control of the

IPTG-inducible Pspac promoter. This strain was derived from EP58 (smc::kan,

amy::Pspac smc) by exchanging the resistance cassette from cm to tet in order to make

it compatible with JM8 or JM9 strain that also carried the cm resistance. The

corresponding strains JM17 (scpA-yfp, smc::kan, amy::Pspac-smc) and PG33 (scpB-

yfp, smc::kan, amy::Pspac-smc) were grown in the presence and in the absence of

IPTG. The strains grown with IPTG behaved like wild type and showed the bipolar

foci formation of the ScpA and ScpB proteins, as seen in fig. 22. In the absence of

IPTG the cells had decondensed nucleoids and the SMC was not seen in bipolar foci

fluorescence but was distributed throughout the cell:

Fig. 22: Fluorescence microscopy of PG33 cells grown (A) with and (B) without
IPTG.

(A) PG33 cells grown
with IPT G

(B) PG33 ce lls grown
without IPT G
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To investigate whether SMC can form foci in the absence of ScpA and/or

ScpB, strains were derived from JM25 (smc-yfp) in which scpA, scpB or both genes

were deleted. A control strain JM33 (smc-yfp ypuI::tet) was constructed in which the

ypuI gene downstream of scpA and scpB was deleted. As seen in fig. 23A, the control

strain JM33 (smc-yfp ypuI:: tet) grew like the wild type and showed SMC as bipolar

foci. In strains JM31 (smc-yfp, scpA::tet), JM32 (smc-yfp, scpB::tet) and JM34

(scpAB::tet, smc-yfp), SMC was no longer visible as foci but was distributed

throughout the cell:

Fig. 23: Fluorescence microscopy of B. subtilis cells growing at mid-exponential
phase. Left side panel shows fluorescence of SMC-YFP and the right panel, DNA
stained by DAPI. A: JM33 (smc-yfp, ypuI::tet), B: JM 31(smc-yfp, scpA::tet), C:
JM32 (smc-yfp, scpB::tet).

In most cases, fluorescence was seen distributed throughout the cell (fig. 23B

and C), however, some cells had foci that were located on the nucleoids but in an

aberrant fashion. In few cases, fluorescence was seen to accumulate near the

membrane. Interestingly, some cells showed fluorescence even in anucleate cells (fig.

23B and 23C, indicated by arrows), which was in contrast to anucleate cells

containing ScpA and ScpB that carried a spo0J mutation. These observations show

that the foci represent the active SMC complex. While SMC can still form foci on
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DNA, both ScpA and ScpB are required for proper localization on the nucleoids.

From this, it can be inferred that ScpA and ScpB play an essential role for the

formation of foci which make the condensation centers supporting the ternary

complex formation by proteins in vivo.

3.10 The SMC complex requires active replication for its bipolar foci segregation

In order to probe the dynamic bipolar movement of the SMC complex foci, the

ScpA-YFP fusion was viewed in a strain KL210, which carries a temperature

sensitive mutation in dnaB that blocks the initiation of replication process upon

temperature upshift. JM46 (scpA-yfp, dnaBts) cells were monitored for ScpA

localization by shifting the growing cultures from 25°C to 45°C for an hour which

arrested the replication process and then back to 25°C to resume replication. At the

time of temperature upshift all ongoing replication processes were completed but no

new process was initiated. Under the microscope, cells at this stage appeared

filamentous and showed a single compact nucleoid (fig 24A). One to three ScpA foci

were seen aggregated at the cell center on the nucleoid:

Fig. 24A: Fluorescence microscopy of JM46 cells after 60 min at 45°C (temperature
upshift). Left panel showing the ScpA-YFP and the right panel DNA, stained with
DAPI. White bars represent the ends of the cell.

ScpA- YFP DNA
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When the cultures were shifted from 42°C back to 25°C and grown for an

hour, the cells had resumed their replication process, which was visible by the

presence of two nucleoids per cell. The cells were no longer filamentous and ScpA

was seen as separated bipolar foci, shown in fig. 24B below:

ScpA-YFP DNA

Fig. 24B: Fluorescence microscopy of JM46 cells shifted from 45°C to 25°C
(temperature downshift). Left image showing the fluorescence of ScpA-YFP and the
right image, the DAPI stained DNA. White lines mark the ends of the cells.

Similar observations were seen even with SMC-YFP strain. These

observations show that the active segregation of the replicated chromosomes depends

on SMC complex and in turn on active replication process. The SMC complex is

initially loaded at the replication center and active replication causes the foci to move

apart bidirectionally resulting in condensation and segregation of replicated

chromosomes.

3.11 SMC localization depends on DNA topology

Studies have shown that B. subtilis SMC affects plasmid topology in vivo

(Lindow et al., 2002a). Moreover, SMC mutants showed decondensed nucleoids and

were hypersensitive to DNA gyrase inhibitors (Lindow et al., 2002a). Depletion of

topoisomerase I suppressed the chromosome-partitioning defect of the smc null

mutant. Thus, SMC seems to function in concert with other topoisomerases as a

chromosome organizer. In order to look for the localization behaviour of SMC in the

absence of active DNA topology-modulating proteins like gyrase and topoisomerase
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IV, JM25 (smc-yfp) and JM8 (scpA-yfp) cells were treated with drugs that inhibited

gyrase activity. Novobiocin belongs to the coumarin drug family that contains natural

products originally isolated form Streptomyces species. Coumarins inhibit

supercoiling and enzyme turnover by preventing the binding and hydrolysis of ATP

(Ali et al., 1993). Nalidixic acid is a member of the quinolones drug family that are

synthetic drugs that act by forming an inhibiting ternary complex with the

topoisomerases in the presence of DNA (Grompone et al., 2003; Kato et al., 1990).

JM8 and JM25 cells were treated with novobiocin (10 µg/ml) or nalidixic acid (200

ng/ml) for one hour and examined for changes in the nucleoid structure using DAPI

stain and foci localization pattern analyses. The treated cells showed decondensed

nucleoids, some of the cells showed a much denser DNA region at the cell center:

                                    ScpA-YFP                 DNA

Fig. 25: Fluorescence microscopy of JM8 cells treated with nalidixic acid (white bars
show the ends of the cells). Arrows indicate dense DNA regions, where a ScpA-YFP
focus is formed.

The SMC/ScpA proteins were no longer seen as foci in the cells with

decondensed nucleoid, in smaller cells foci were seen at the cell center (fig. 25) which

also corresponded to the dense DNA region visualized by DAPI staining. The

presence of the central dense DNA region might be due to the secondary effect of

gyrase inhibition on replication inhibition. Inhibited gyrase increases the local

accumulation of positive supercoils downstream of replication forks and this effect

slows down the replication fork progression (to one third) (Khodursky et al., 2000).

These observations suggest that SMC requires a defined DNA topology for proper
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function. Disturbances exerted by action of the antibiotics novobiocin or nalidixic

acid might interfere with proper recognition of the DNA template by SMC and

weaken or even abolish SMC-mediated DNA compaction. One of the possible

conclusions could be that SMC binds to specific DNA structures and is necessary to

maintain the DNA topology originally established by the topoisomerases.

3.12 SMC - A bacterial condensin protein

3.12.1 Effects of overexpression of SMC

To purify SMC from B. subtilis for biochemical studies, smc was cloned into a

plasmid pMW6 that could overexpress the protein as a C-terminal RGS-His tag from

the amyE locus upon induction with xylose. The resulting strain JM6 (amy::Pxyl-smc-

RGS-His6), was able to overproduce SMC-RGS-His6 upon induction (compare lane 1

and 2 in fig. 26), but the western blot with anti-SMC and anti-His antibodies revealed

in addition to a band of an expected size, the presence of a second band approximately

half of the size of SMC which was seen only in the xylose induced strain (fig. 26,

lanes 2). The strain JM6 was not used for further analyses because it also failed to

rescue the smc null mutant. Instead, another strain CAS4 (amy::Phyperspank-smc-

His6), was used in which SMC could be overproduced using expression driven by an

IPTG-inducible hyperspank promoter (Volkov et al., 2003). SMC expressed by this

system also complemented the smc null mutant. Upon induction of SMC with 1 mM

IPTG, the nucleoids were more condensed and also formed up to 5% anucleate cells

(Volkov et al., 2003). Similar experiments were carried out with overexpression of

ScpA or ScpB, which did not exhibit any detectable effect on the cellular

chromosome structure suggesting that SMC is the key player in chromosome

condensation and the Scp’s appear to function only in conjunction with SMC.
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SMC (~135 kDa)

Fig. 26: Western blot analysis using SMC antibody.
Lanes 1 and 2: JM6 cells grown without and with xylose, respectively.
Lanes 3 and 4: CAS4 cells grown without and with IPTG, respectively.

3.12.2 SMC condenses DNA from a single position on the nucleoid

To visualize whether SMC retained its localization pattern upon

overproduction, chromosomal DNA from the strain JM25 carrying a functional C-

terminal YFP fusion of SMC was transformed into the SMC overexpression strain

CAS5 (Phyperspac-smc) where smc was placed under the control of a hyperspac

promoter at its original locus. The resulting strain JM35 (smc:: Phyperspac-smc-yfp),

grown with 0.025 mM IPTG, showed similar nucleoid morphology from that of wild

type cells and SMC-YFP localized in a similar bipolar manner as in the parent strain.

With 1 mM IPTG, chromosomes were highly compacted, the SMC-YFP were much

brighter but still largely retained in the foci (fig. 27A). Similarly, ScpB-YFP was also

retained as foci at 1mM IPTG in JM36 (scpB-yfp, Phyperspac-smc) cells:
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Fig. 27: Fluorescence images showing the effect of SMC overproduction on

localization of (A) SMC-YFP in JM35 cells and (B) ScpB-YFP in JM36 cells.

Similar observations were made when SMC-His6 was overproduced from an

ectopic location on the chromosome, while a SMC-YFP fusion was driven by the

original promoter at the smc locus in PG45 (smc-yfp,  Phyperspank, smc-His6 at

amyE). These foci represent the condensed state of the nucleoid and also indicates that

the whole SMC complex are retained at its specific location even upon

overproduction and brings about global chromosome compaction from a defined

position on the nucleoid.

3.13 Regulation of SMC

The rate of gene expression can be modulated in several ways, either through

post-transcriptional mechanisms that affect mRNA half lives, translation initiation

and/or translation progression (McAdams and Shapiro, 2003) or through translational

or post-translational processes operating at the protein level, e.g. by action of

proteases. SMC is found in an operon flanked by essential genes with rncS located

upstream, which is involved in RNA processing (Herskovitz and Bechhofer, 2000)

and ftsY located downstream and serving as the anchor for the bacterial signal
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recognition particle (SRP). FtsY is not only involved in secretion of extracellular

proteins, but also participates in proper localization of spore-forming proteins

(Kakeshita et al., 2000). In many cases, genes that are co-transcribed are involved in a

common functional pathway, which however does not seem to be the case with smc.

Within the rncS operon, all three genes have been shown to be regulated by a σA

promoter situated upstream of rnc (Oguro et al., 1996). In addition, a σk promoter

sequence was mapped near the 3’ end of smc that regulates the late stationary phase

expression of FtsY (Kakeshita et al., 2000).

Immunoblot and Immunofluorescence studies employing SMC antibodies

have demonstrated the absence of SMC in stationary phase cells (Graumann et al.,

1998). In order to investigate if SMC is regulated at the transcriptional level, primer

extension studies were carried out using total RNA extracts prepared from different

growth stages of PY79 cultures (fig. 28B), employing a primer specifically located

150 bp downstream from the start codon of smc (fig. 28A). The results of primer

extension experiments revealed the presence of a very strong extension signal

corresponding to a transcript which was identified in all the growth stages (fig 28C).

The size of this transcript corresponds to approx. 480 bp (distance of transcript signal

to primer location) and the sequence upstream to the corresponding transcript signal

possesses a weak similarity to the consensus of a typical σH recognition sequence

(AGGA-15 bp-GAAT), although more experiments are required to confirm the

existence an independent promoter for smc expression. It can of course not be

excluded that the transcript points to a post-transcriptional modification site of the

mRNA transcribed from the σA promoter upstream of rncS. The experiment showed

the presence of a smc transcript in all the growth phases, which strongly suggests that

SMC might be regulated at the stage of protein synthesis.
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Fig. 28A: Schematic representation of rnc operon. The expression of rncS, smc, and
ftsY are controlled by PA ( A promoter).The expression of ftsY in the stationary phase
is regulated by the PK ( K promoter). PH is the putative promoter site mapped in this
experiment from the primer extension analysis.
B: Growth curve of PY79 cells starting from mid exponential phase. The blue dots
represent the time points when samples were withdrawn for analyses.
C: Primer extension analysis from total RNA extracts of samples from mid log
(lane1), late exponential (lane 2), early stationary (lane 3) and late stationary phase
cells (lane 4) (fig.28B). The DNA sequencing ladder to compare the size of the
transcript signal (left 4 lanes reading CTGA). Arrow showing the strong transcript
signal for smc. The sequence region of the rnc and smc in fig. 28A shows the primer
‘p’ used to map the smc transcript and the transcriptional initiation site ‘t’, leading to
the possible promoter sequence PH (black, underlined).

3.13.1 Growth phase dependent expression of SMC and ScpB

To monitor the SMC levels during different growth phases, cell extracts taken

at various time points from the growing cultures (fig. 28B) were analyzed by western

blotting utilizing SMC antibodies. The results showed the presence of SMC at the mid

log phase, a gradually diminishing SMC amount at the onset and progression of the

stationary phase, and its absence in the late stationary phase (fig. 29B, lanes 1- 4). The

ScpB expression profile was also analyzed by using ScpB polyclonal antibodies (fig.

29C). Interestingly, the ScpB protein profile closely resembled that of SMC which

further indicate that both proteins function together and thus might be regulated in a

similar manner. Surprisingly, a second band of significantly higher size (~48kDa)
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compared to that of ScpB was detected when the ScpB band began to disappear at the

entry into the stationary phase. This band might be explained by a cross reaction of

ScpB antibody with another protein synthesized at the later stage of growth.

Alternatively, although unlikely, it cannot be excluded that this band might

correspond to a modified variant of ScpB itself.

1 2 3 4 1 2 3 4A B

C

135 kDa

22 kDa

Fig. 29A: SDS-PAGE of the crude cell extracts showing the protein levels. Cells
taken from various time points (as in fig. 28B), from mid-exponential phase to
stationary phase. B: Western blot with SMC, and C: ScpB antibodies.

3.13.2 Stability of SMC

In order to check the stability of SMC during different growth phases, cultures

were treated with chloramphenicol (Cm) to inhibit protein synthesis and the levels of

SMC was compared to that of the untreated cultures. Cm (90 µg/mL final

concentration) was added to growing cultures at the mid-exponential phase (OD600nm=

0.45) and at the onset of the stationary phase (OD600nm= 2.0). For determining the

relative abundance of SMC during the cell cycle, samples were normalized, such that

almost equal amounts of total protein were loaded in all lanes and the cellular SMC

levels were measured by western analysis employing SMC antibodies. As shown in

fig. 30 (lanes 1-4), in untreated cells the levels of SMC decreased during stationary

growth. In cultures where Cm was added at mid-exponential growth phase, shown in

fig. 30 (lanes 5-7), SMC was present even in the stationary phase cells, even though

there were some decrease in their levels, it was not as significant compared to the

untreated. In cultures where Cm was added at a later stage of growth, shown in fig. 30

(lanes 8 and 9), SMC levels were similar to the corresponding untreated cultures:
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1 2 3 4 5 6 7 8 9

Fig. 30: Stability of SMC: Western blot analyses of cell extracts with SMC antibodies
Lanes 1-4: SMC profile of untreated cells, samples taken at time points similar to
previous experiment (fig. 28B)
Lanes 5-6: SMC profile of cells treated with Cm at mid-exponential phase
Lane 5: 2 h after Cm treatment (OD600 0.75)
Lane 6: 4 h after Cm treatment (OD600 0.9)
Lane 7: 7 h after Cm treatment (OD600 1.0)
Lanes 8 and 9: SMC profile of cells treated with Cm at late exponential phase
Lane 8: 1 h after Cm treatment (OD600 2.5)
Lane 9: 5 h after Cm treatment (OD600 3.2)

Together with the experiments described above, these results demonstrate that

SMC is specifically degraded in a post-translational manner by a dedicated protease

that is expressed exclusively at the transition to the stationary growth phase. In order

to identify this protease, the experiments presented here could be repeated with

available protease null mutants.

3.14 Involvement of SMC complex in repair

It is known that in eukaryotes SMC proteins like SMC5, SMC6, and Rad50, a

member of SMC family play an important role in DNA repair (Introduction 1.4.2). In

order to interrogate the involvement of B. subtilis SMC in repair, smc null mutants

were tested for sensitivity to mitomycin C (MMC). MMC, is an antitumor agent

isolated from Streptomyces cultures which is used in chemotherapy (Paz et al., 1999).

MMC acts as a bifunctional or trifunctional alkylating agent which cross-links DNA

by formation of adducts to an extent proportional to its content of guanine and

cytosine. The excision of adducts triggers the SOS response, a concerted induction of

several DNA repair and recombination activities that has been studied in E. coli,

where the response is controlled by the lexA-specified repressor (Wei et al., 2001).
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The strains PG∆388, JM11, and JM13 carrying deletion of smc, scpA, and

scpB genes, respectively, and the wild type PY79, were streaked on LB plates

containing 0, 50, 100 and 200 ng/ml of MMC and were incubated at 23°C because of

the temperature sensitivity of the SMC and ScpAB mutants. All four strains grew on

LB plates without MMC. While the wild type cells grew on plates containing 50 and

100 ng/ml MMC, the deletion strains of smc and also its interaction partners scpA and

scpB did not show any growth even on a plate with 50 ng/ml MMC. The sensitivity of

the mutants towards MMC suggests a direct or an indirect involvement of SMC,

ScpA, and ScpB in DNA repair. Furthermore, the localization patterns of SMC and

ScpB were examined after the treatment of the cells with MMC (100 ng/ml) for 30

minutes. The MMC treated cells possessed a slightly decondensed nucleoid and

anamalous foci:

ScpB-YFP

SMC-YFP

Fig. 31: Fluorescence microscopic images showing the effect of mitomycin on
localization of SMC and ScpB in JM25 (smc-yfp) and JM9 (scpB-yfp) cells
respectively. White bars represent the ends of the cell.

Under normal conditions there are 2-4 foci in the cell occupying the polar

positions, whereas MMC-treated cells (200 ng/ml) showed foci distribution

throughout the cellular space. Some cells contained two foci at the cell center rather

than at the poles (fig. 31). These foci rearrangements after the MMC treatment might
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indicate an incomplete process of recombination where the SMC/ScpA/ScpB complex

might play a crucial role mediating the repair process.

3.15 Identification and examination of other SMC-like proteins in Bacillus
subtilis

Since eukaryotic cells possess more than just one SMC-like protein, it was

interesting to investigate for other SMC homologs in B. subtilis. A BLASTP search

performed at the SubtiList server using SMC from B. subtilis as a query sequence

revealed a number of homologs with the two most significant having E-values of

3·10-12 and 6·10-7. These corresponded to YirY (1130 a.a; MW 128.69 kDa) which

was identified in the course of genome sequencing project as an SbcC homolog

(Medina et al., 1997) and RecN (576 a.a; MW 64.3 kDa) which is involved in DNA

repair and genetic recombination (Alonso et al., 1993).

In B. subtilis, YirY/SbcC is located in an operon flanked by addA, addB

(ATP-dependent DNAses and analogs of RecBCD in E. coli), and sbcD genes

upstream and a functionally unknown yisB downstream of it:

Fig. 32: Organization of add operon in B. subtilis genome.

The proteins AddAB and SbcCD are DNA associated and homologs of these

proteins have been shown to play a role in recombination and repair in various

organisms (Alonso et al., 1993; Cromie et al., 2001). The SbcC-SbcD complex in E.

coli are similar to the eukaryotic Rad50-Mre11 complex involved in double strand

break repair (Cromie et al., 2001). Rad50 is a member of the SMC protein family

possessing the conserved ABC ATPases and a N-terminal ‘FKS’ (or FRS) motif

located near the Walker A site, conserved in most of the SMC proteins and also in

SbcC and RecN (Cobbe and Heck, 2003).
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3.15.1 Analysis of YirY/SbcC function

In order to experimentally probe the SbcC (YirY) function and its proposed

involvement in DNA repair, a sbcC disruption strain JM42 (sbcC::pJQ43) was

constructed by a Campbell integration of a plasmid carrying an internal fragment (~1

kb) of sbcC. The strain JM42 did not show any obvious phenotype and grew like the

wild type under optimal growth conditions. To test for the role of SbcC in DNA

repair, the strain JM42 was streaked on LB plates supplemented with MMC (that

induces double stranded breaks). When compared to wild type cells that survived on

the plate containing 50 and 100 ng/ml MMC, JM42 grew only poorly in the presence

of 50 ng/ml of MMC and did not show any growth on a plate with 100 ng/ml of

MMC confirming its role in the DNA damage related stress response.

To localize SbcC in cells and to observe the effect of DNA damage stress,

SbcC was tagged to a fluorescent protein in a plasmid with a xylose promoter that

assured the transcription of the down stream genes. The resulting strain JN6 (sbcC-

yfp,  Pxyl) grew only in the presence of xylose but slowed down its growth when

xylose was removed from the medium, indicating an important cellular role for yisB.

When analyzed under the microscope, the JN6 cells showed low level fluorescence

visible throughout the cell. 30 min after addition of MMC, nucleoids appeared slightly

condensed and SbcC-YFP foci were detectable in 5% of the cells. After 2 h of

induction with mitomycin, 1 or 2 foci were observed in 45% of the cells (fig. 33).

These foci might be interpreted as locations where DNA repair takes place. In contrast

to the foci formation of SbcC, SbcD-YFP localized through out the cell (data not

shown).
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SbcC-YFP DNA membrane overlay

Fig. 33: Fluorescence microscopy of JN6 cells 2 h after addition of MMC. Cells were
stained for DNA and membrane. Image to the extreme right shows the overlay of the
images with membrane in red, DNA in blue and the SbcC-YFP foci in green showed
by arrows.

RecN, the second SMC-like protein in B. subtilis that functions in association

with RecF, RecL, RecO, RecR, and RecA proteins in homologous recombination

during transformation (Alonso et al., 1993), also showed foci formation upon

induction with MMC. The RecN disruption mutant behaved similar to sbcC mutant on

MMC plates (Kidane et al, in press).

3.15.2 Localization of AddAB

The addA and addB genes encode different subunits of the nuclease-helicase

AddAB (also termed exonuclease V or RecBCD in E. coli) involved in initial stages of

recombination (Haijema et al., 1996). AddB was discussed as an interacting protein of

ScpA, a subunit of SMC complex (Noirot P, 2003). If AddB and ScpA would interact,

one would also expect them to colocalize. To verify this idea, the proteins AddA and

AddB were C-terminally tagged to fluorescence proteins in plasmids with inducible

promoters that assured the transcription of downstream genes upon integration into

operon. Fluorescence microscopic investigations of strains JN7 (addA-gfp,  Pxyl) or

JM41 (addB-yfp,  Pspac) did not show any foci formation like ScpA, instead a weak

fluorescence was uniformly distributed through out the cell. The observed

fluorescence increased between 30 min and 2 h after addition of MMC:
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Fig. 34: Fluorescence microscopy of JN7 (addA-gfp) cells after MMC induction. A:

untreated, B: after 1 h, C: after 2 h. White bars show the ends of the cell.

These observations show that proteins acting at specific sites on the DNA (i.e.

DNA breaks) do not necessarily form foci after induction of breaks or are not

necessarily associated with the nucleoid.

3.16 Topoisomerase IV - A chromosome segregator

So far, SMC has been thought to play a key role in chromosome segregation,

however, the studies presented in this work show that SMC is more a condensing than

a segregation factor. Other proteins that are also involved in chromosome segregation

are topoisomerase IV (Huang et al., 1998), CodV and RipX (Sciochetti et al., 1999).

Topoisomerase IV is primarily responsible for unlinking the catenates that are

generated at the end of replication when the two replication forks converge

(Zechiedrich and Cozzarelli, 1995). Topoisomerase IV is a heterodimeric enzyme

belonging to the type II topoisomerase family and is formed of two subunits- ParC

and ParE, similar to the ParC and ParE of E. coli. Temperature sensitive mutants of

topoisomerase IV in E. coli and Salmonella typhimurium formed long filamentous

cells defective in nucleoid segregation that divided frequently to produce anucleate

cells (Luttinger et al., 1991). B. subtilis also showed a similar phenotype at the non-

permissive temperature (Huang et al., 1998). Topoisomerase IV mutants of C.

crescentus are highly pinched at multiple sites, a typical cell separation phenotype,
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but the cells do not divide to produce cells lacking DNA (Ward and Newton, 1997).

Similar to overproduction of gyrase, ParC and ParE showed enhanced relaxation

activity of supercoiled plasmid and were able to suppress a topA mutation (Kato et al.,

1990).

In E. coli, ParC is associated with the replication machinery and was seen to

form foci that colocalized with DNA polymerase III while ParE was not present at the

replication factory but localized as foci at the poles and at the cell center (Espeli et al.,

2003). In B. subtilis, ParE-GFP was shown to localize uniformly throughout the cell

in actively growing cells, while the ParC-GFP fusion protein showed bipolar

localization (Huang et al., 1998) in a manner which looked similar to SMC.

In order to verify whether ParC and SMC colocalize, the protein ParC was

tagged to YFP to yield the strain JM43 (parC-yfp). Contrary to what was reported

previously (Huang et al., 1998), ParC-YFP localized throughout the nucleoids and the

fluorescence distribution was similar to the DAPI stain:

Fig. 35: Fluorescence microscopy of JM43 cells (A) ParC-YFP (B) DNA stained with
DAPI, (C) overlay of image (A) and (B).

Thus, ParC unlike SMC does not act on a specific site but bind throughout the

nucleoids. In the meantime, another work group presented results demonstrating that

ParE-GFP fusion was present on the nucleoid similar to that of ParC (Meile C.J,

2003), suggesting that they function together in maintaining the DNA topology.
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In E. coli,  a topA mutant was found to be one of the suppressors of mukB

deletion strain (Sawitzke and Austin, 2000). It was also reported that mutations in

topA could be rescued by overproduction of ParC and ParE or the gyrases (Kato et al.,

1990). In B. subtilis, the partitioning defect of the smc null mutant was significantly

suppressed by the depletion of topA (Lindow et al., 2002a). These observations led to

the question whether the depletion of topoisomerase IV could rescue the segregation

defect of smc null mutant. To answer this, strain JM45 (Phyperspank-parE) was

constructed in which ParE and ParC expression was controlled by an IPTG-inducible

hyperspac promoter. Initial experiments with JM45 cells upon induction with 1 mM

IPTG showed more condensed nucleoids. Further analyses of this strain could not be

carried out due to the paucity of time. However, the effect of ParC and ParE

overproduction or depletion on smc phenotype could give us important insight

towards a better understanding of the networked action of proteins involved in

chromosome organization.
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4. Discussion

In this work, a novel protein complex termed the SMC complex has been

identified and characterized. The evolutionary conserved SMC protein forms a

complex with two proteins, ScpA and ScpB, formerly known as YpuG and YpuH

respectively, which have been analyzed and assigned a new role in chromosome

condensation. The deletion/disruption of these genes was demonstrated to affect

chromosome organization and each null mutant showed a phenotype similar to that of

a smc deletion strain, with temperature sensitive slow growth and decondensed

nucleoids showing a strong segregation defect (Britton et al., 1998; Graumann et al.,

1998; Moriya et al., 1998). Depletion of smc in the scpA or scpB deletion strains, or

deletion of both scpA and scpB, also resulted in the same phenotype, indicating that

SMC, ScpA, and ScpB function in the same pathway for chromosome condensation

and thus belong to the same epistatic group. ScpA and ScpB form a new family of

proteins that is conserved in most of the eubacterial and archaeal species that possess

a SMC homolog. ScpA also shows homology to the eukaryotic SMC-interacting

protein Scc1 and has lately been assigned as a member of the kleisin protein family

(Schleiffer et al., 2003). The resemblance of ScpA to Scc1 and the presence of a HTH

motif in ScpB provides us with some insights about how these proteins might be

associated to function with SMC. Because biochemical and structural studies of these

proteins are not available, at the moment, several possible roles can be assigned to

them ranging from a cofactor in the mechanical functioning of the SMC molecule to a

regulator of SMC protein that directs the SMC complex to bind DNA in a specific

manner by mediating its interaction with other proteins.

A key observation in this work has been the finding that SMC, ScpA, and

ScpB form discrete foci on the DNA, unlike other chromosome-associated proteins

that are bound throughout the nucleoids. This striking finding is a novel pattern of

localization and suggests that SMC, ScpA, and ScpB affect chromosome compaction

and segregation from a defined region on the nucleoids and the foci represented the

functional SMC complex and thus the condensed state of the nucleoid. Attempts to

localize SMC was previously made by (Britton et al., 1998), who observed discrete

foci with partially functional SMC-GFP fusion. Immunolabeling with SMC

antibodies also showed bipolar foci which were independent of nucleoid as reported
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by (Graumann et al., 1998). Similar patterns for SMC and ScpB were later reported

by (Lindow et al., 2002b) which was consistent with the observations described here.

The SMC counterpart in E. coli, MukB also showed foci formation (den Blaauwen et

al., 2001). In Caulobacter, SMC showed 2-3 foci in swarmer cells that do not

replicate their DNA, while stalked cells which actively replicate DNA possessed 3-4

foci randomly distributed in the cell (Jensen and Shapiro, 2003). The observed

localization pattern of the SMC/ScpA/ScpB complex in form of foci within the

nucleoid might indicate a recruitment of the proteins to a specific nucleoid structure.

In the eukaryote Saccharomyces cerevisiae, the SMC1 and SMC2 was demonstrated

to bind to secondary structures, preferentially to AT rich sequences (Akhmedov et al.,

1998; Gregson et al., 2002; Laloraya et al., 2000) and SMC4p-GFP localized to

rDNA regions (Freeman et al., 2000). Surprisingly, B. subtilis SMC has been shown

to bind to DNA in a non-specific manner in vivo (Lindow et al., 2002b) and in vitro

(Volkov et al., 2003). In bacteria, it is known that chromosomal DNA is divided into

topologically independent domains (Sinden and Pettijohn, 1981); (Drlica, 1986).

Therefore, it can be speculated that the presence of repetitive patches of T/AT-rich

sequences within the B. subtilis genome might be of some significance in providing a

defined chromosomal structure that could represent a binding location for the SMC

complex. In fact, as shown in this work, the observed specific subcellular localization

of the SMC complex requires a well-defined chromosome topology since SMC foci

formation was abolished upon addition of the gyrase inhibitor novobiocin, which

disturbs the DNA supercoiling status.

The bipolar localization pattern of SMC, ScpA, and ScpB suggests that all

three proteins function together in a complex, especially since the interaction was also

confirmed in vivo using FRET technique. The SMC strep tag affinity purification and

immunoprecipitation experiments also confirmed that SMC appears to have ScpA and

ScpB as interacting partners. The formation of a ternary complex of SMC/ScpA/ScpB

has also been biochemically confirmed using surface plasmon resonance technique

with purified proteins. ScpA was able to bind to SMC head domains only in the

presence of ScpB (Volkov et al., 2003), although the binding was not influenced by

DNA in this case. In E. coli, the subunits of MukB complex, MukE and MukF, were

shown to bind to the C-terminus of MukB (Yamazoe et al., 1999). In yeast, it has

been shown that a cohesins non-SMC subunit Scc1 binds to the SMC head domain

(Yoshimura et al., 2002) by bridging the head regions of a SMC3 and SMC1
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heterodimer (Gruber et al., 2003). The interactions between SMC, ScpA, and ScpB

were also independently confirmed by yeast two hybrid screenings reported by D.

Ehrlich’s lab (Soppa et al., 2002).

SMC appears to act as a true condensing factor, since the overproduction of

SMC alone led to more condensed nucleoids (Volkov et al., 2003), while

overproduction of ScpA or ScpB did not affect the nucleoid structure (unpublished

data). This infers that SMC is the major condensing factor and that ScpA/ScpB act as

cofactors in SMC function. The overproduction of SMC did not disturb the bipolar

localization pattern of the SMC complex, but the fluorescence was retained as

brighter foci in the cell. These findings support the idea that the foci represent

chromosome condensation centers, where SMC actively condenses the nucleoid from

a single specific position.

So far, a few biochemical studies have tried to explain how SMC might

function at the mechanistic level. Hirano et al., studied biochemical properties of

SMC by constructing various mutations in the hinge domain of the SMC molecule as

well as in its ATPase cassette. More specifically, in their studies focusing on the

ATPase function of SMC, they introduced point mutations in (i) the Walker A motif

changing the lysine at position 37 to isoleucine (K37I), (ii) the Walker B motif

changing aspartic acid 1117 to alanine (D1117A), and (iii) the signature C motif

where the conserved serine 1090 residue was mutated to arginine (S1090R). While

the Walker A and Walker B mutants were unable to bind ATP, the C motif mutant

could bind ATP but was unable to hydrolyse it. All the three mutants showed no DNA

binding activity, suggesting the importance of the ATPase region in the DNA binding

function (Hirano et al., 2001). Attempts to study the behaviour of ATPase mutants in

vivo were initiated during this work. Point mutations identical to those described

above on an YFP plasmid carrying a C-terminal or N-terminal SMC fragment. The

constructed plasmids were sequenced for confirmation of the presence of the desired

mutation and were then transformed into PY79 cells to yield JM37 (K37I,

Phyperspac-smc-yfp), JM38 (D1155G, smc-yfp), and JM39 (S1090R, smc-yfp).

Surprisingly, all the three mutants did not show any growth defect and grew similar to

wildtype cells. Microscopic observations, however, revealed 10-15% of the cells with

anamalous nucleoids where the fluorescence was distributed through out the cell.

Although the expression of SMC as mutant protein in vivo needs to be confirmed,

these preliminary observations suggest that the specific foci formation is strictly
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dependent on DNA binding, which in turn is facilitated by ATPase activity. However,

it cannot be ruled out that the ATPase activity might also be necessary for some sort

of mechanical action of SMC during its role in chromosome condensation.

Furthermore, it remains to be explained why strains harbouring mutated ATPase SMC

variants grow like the wild-type. This discovery might be a first clue to that the

observed growth defect and the aberrant nucleoid structure of smc null mutants might

be a result of at least two different, i.e. independent effects of SMC’s cellular

functions.

Several studies have tried to address the role of ATP binding and hydrolysis in

SMC proteins. In Rad50, a member of SMC family, ATP binding and hydrolysis are

connected to DNA binding and end processing by Mre11 (Hopfner et al., 2000). In B.

subtilis SMC, the addition of DNA stimulated the ATPase activity by 2- to 4-fold and

also its DNA binding (Hirano et al., 2001; Yoshimura et al., 2002). Studies using

atomic force microscopy (AFM) have shown that a single condensin complex is able

to trap two positive supercoils of DNA in an ATP hydrolysis-dependent manner

(Yoshimura et al., 2002). Based on biochemical results, Haering et al proposed that

cohesin holds the two sister chromatids together by ‘embracing’ them within its arms

(Haering et al., 2002) by forming a closed ring-like structure. Biochemical studies

with SMC proteins and DNA using surface plasmon resonance supported this model

and showed that SMC does not bind to DNA through its head domains alone, but

requires the coiled coil regions, therefore the entire SMC molecule takes part in DNA

binding (Hirano and Hirano, 2002; Volkov et al., 2003). It was speculated that

ATPase activity is required for initial loading of SMC on DNA, whereby ATP

binding either induces the formation of the closed loops or is required for temporary

opening of the rings in the loading process (Hopfner, 2003). Recent reports on

eukaryotic cohesin (SMC1 and SMC3) have shown that ATP hydrolysis is required

for its stable association with chromosomes (Arumugam et al., 2003).

Nucleoids undergo several conformational changes during cell growth. At the

onset of stationary phase and of sporulation, the compact central nucleoid transforms

to an elongated axial filament and the chromosome is stored as a condensed donut

structure in spores (Pogliano et al., 1995). The SMC complex is responsible for the

compact chromosome organization in rapidly replicating cells. As demonstrated in

this work, at the onset of stationary phase, B. subtilis cells contain progressingly

reduced amounts of SMC which is reflected by a decondensed nucleoid. In spores, the
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chromosome has to be accommodated into a much smaller space. This extreme

compaction/conformational change is brought about by HBsu and SASPs that are

nucleoid-binding proteins abundantly expressed in spores (Ross and Setlow, 2000).

Even in E. coli, during the early stationary growth phase, average fluorescence of

MukB-GFP foci decreased (Ohsumi et al., 2001). Moreover, the levels of major

nucleoid associated proteins, Fis, Hfq, StpA, H-NS, HU, and DnaA are reduced in the

stationary phase, while there is an increased level of IHF, Dps and other DNA-

binding proteins (Ali Azam et al., 1999). Such variation in the levels of DNA binding

proteins affect the DNA topology, and in turn change the transcriptional profile,

which is required for adaptation of the bacterium to the changed stationary phase

environment.

During the transition state of exponential to stationary phase, B. subtilis

changes its protein expression profile and induces various extracellular proteases and

other degradative enzymes to maximize utilization of nutrients and also by altering its

metabolic pathways (Phillips and Strauch, 2002). SMC might be regulated at the

transcriptional or at the protein level due to the effect of stationary phase-induced

proteases, since the primer extension studies showed the presence of smc transcript

throughout the various growth phases. Instability of SMC at stationary phase could

also explain the observation that overproduction of SMC during the stationary phase

had no effect on chromosome condensation (P. Graumann, personal communication).

Functionally, SMC might act as a coupling factor between replication and

chromosomal condensation. SMC stability assays showed that SMC activity is

essential only in the actively replicating/growing cells. Also the movement of the

SMC foci was dependent on active replication. SMC is necessary for the proper

alignment of chromosomes in the cell, since the smc mutants showed aberrant

location of origin regions (Graumann, 2000). The process of sporulation is initiated

when the origins are at the poles and chromosomes extend into an axial filament. A

proper positioning of the Ori region is disturbed in the absence of SMC which is

reflected in its spore forming deficiency (only 0.4% cells sporulate in smc null strain

when compared to 70% in wildtype cells). Recent observations with MreB and Mbl

mutants showed disturbances in chromosome alignment and mislocalization of the

SMC complex foci (Soufo and Graumann, 2003). MreB and Mbl are actin-like

skeletal proteins in B. subtilis, involved in cell shape determination and localize as

helical filaments around the circumference of the rod-shaped cells in vivo (Jones et
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al., 2001). MreB and Mbl could mediate the interaction with certain regions of

chromosomal DNA to the membrane, thus orienting the chromosome in the cell.

These observations support the long-standing notion of DNA being attached to the

membrane, in this case mediated by MreB and Mbl. One of the future aspects would

be to see if MreB and Mbl mediate the interaction of SMC to DNA.

The hypersensitivity of SMC or ScpA/B mutants to Mitomycin C (MMC) and

the disturbance of the localization pattern in response to MMC treatment

demonstrates their role in DNA repair, either by acting as a cohesion factor through

bringing together the sister chromosomes to repair the damaged strand by

homologous recombination or making the damaged strands accessible for the repair

proteins. Other proteins that showed similarity to SMC, SbcC and the RecN in B.

subtilis are also crucial for cell function during DNA damage stress. The localization

as ‘foci’ in these proteins infers that they have common mode of DNA binding while

performing their respective functions. So far, no data have been available on the in

vivo role of proteins involved in DSB repair, and the findings in this work provide a

base to answer further questions. It will be interesting to attempt colocalization of

SMC and RecN or SbcC, which form repair centers (Kidane et al, in press), and

attempt to co-immunoprecipitate to detect any possible protein/protein interactions.

Also in this work, the discovery that yisB is important for growth has opened a new

prospects for further investigation and our lab has already discovered that YisB

possesses a HNH motif typical for endonulceases and indeed shows DNA

endonuclease activity in vitro (V. Kaiser, personal communication).

Model for SMC function

The results acquired during this study could be combined into a model

schematically shown in fig.37. The SMC complex can be imagined to possess a ring

conformation that can open and close. The closed form mediated by the binding of

ScpA/ScpB (fig37A) and the ring opening caused by ATP hydrolysis, DNA binding

or proteolysis. The cycle of opening and closing of the ring facilitates the traping of

more and more DNA, leading to the DNA condensation process. The foci formation

of SMC complex proteins can be explained by the aggregation of the SMC proteins in

the form of a ‘rosette’ by protein-protein interactions mediated by the ScpA/B



Discussion

99

proteins and DNA topology (fig. 37B). The condensation foci representing several

SMC complexes were seen close to the replication foci in smaller cells. The

bidirectional movement of the condensing foci followed after the separation of the

origins towards the poles. It was reported that SMC does not influence the bipolar

separation of origins (Graumann, 2000), so one can surmise the involvement of an

unknown motor-like protein in the bidirectional movement of the origins and the

condensing foci, one possible candidate would be MreB. In young cells, the SMC

complex is initially loaded at the cell center near the replication machinery, which is

supported by the observation that SMC foci were at the cell center upon inhibition of

replication. When replication commences, the SMC complex brings together loops of

the newly replicated chromosomes and compacts them. As replication progresses, the

extrusion force of replicating chromosome or an additional mechanism that directs the

replicated origins also drives the condensing foci outwards close to the poles. Thus

the progressive condensation of chromosomes by the SMC complex further eases the

segregation of chromosomes.

Fig 37: Models representing, A: SMC complex, B: Aggregation of SMC complex in
the replicating cell. DNA polymerase (grey triangle) replicating DNA (grey lines) and
C: Mode of DNA binding by SMC complex.
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The existence of SMC and SMC-like proteins in prokaryotes and eukaryotes

shows that SMC proteins have an ancient origin, reflecting their fundamental role in

chromosome dynamics. The genetic and microscopic studies in B. subtilis SMC has

given an insight to the in vivo functioning of prokaryotic SMC. Its mechanism of

action and its coordination with various proteins, involved in DNA topology,

replication and repair needs to be addressed in the future. Investigation of suppressors

to SMC mutant might unravel the whole network of regulatory genes involved in

chromosome organization. In eukaryotes, the SMC protein family has been of special

relevance, since its members play a central role in several cell cycle regulatory

networks, and hence they have been proposed as a promising target for therapeutic

drugs affecting cell proliferation (Strunnikov, 2003). Consequently, even in bacteria,

disruption of the SMC complex formation might represent a promising drug target,

especially since ScpA and ScpB are not present in eukaryotic cells, but vital for the

function of the complex.

4.1 Fluorescence microscopy – changing the view of prokaryotes

Unlike eukaryotes that contain separated compartments designed to fulfil

specialized cellular functions, bacterial cells have long been thought of resembling a

more or less simple bag in which the proteins freely diffuse. However, in recent years,

with the help of advanced microscopic techniques and the knowledge of entire

genome sequences and characterization of unknown proteins, it has become clear that

bacteria are precursors of highly evolved eukaryotes and therefore possess a

compartmentalized cell architecture as well, in which even cytosolic proteins carry

out their function(s) at well-defined places by interactions with specific partners.

Intracellular distribution of proteins

Fluorescence microscopy has proved as a valuable in vivo tool to spot proteins

and provide us with a better knowledge about the probable functioning of these

proteins in the cell.
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Proteins associated with the nucleoid that has been observed so far, showed

two kinds of localization patterns, either they are uniformly distributed throughout the

nucleoids or they form specific foci on the DNA. The major DNA-binding protein

HBsu and the type II topoisomerase proteins GyrA and GyrB localized all over on the

nucleoid (Huang et al., 1998), similar pattern was observed for ParC (this work) and

ParE (Meile C.J, 2003). DnaB and Spo0J are the proteins that form foci, bind to the

origin region (Lewis and Errington, 1997). SMC, ScpA, ScpB proteins that also

localized as bipolar foci, might bind to specific topological structures (this work).

Various DNA repair proteins like the SbcC, RecA, RecN, RecO, RecF formed foci

upon DNA damage induction (Kidane et al, in press and submitted). These repair foci

might represent the repair centers, where the damaged DNA might be recruited for

repair. UvrA, a base excitation repair protein, localizes throughout the nucleoid,

indicating that the protein probably constantly scans the genome searching for lesions

in the DNA (Smith et al., 2002). PolA, (DNA polymerase I involved in replication

and repair) localized throughout the nucleoid (Kidane et al., submitted), while

AddAB, required for homologous recombination, did not show any specific

localization but was present throughout the cell (this work). Several different proteins

constituting the DNA replication machinery localized in a single focus located at

about the mid-cell in actively growing B. subtilis cells.

The septal protein FtsZ, assembles as a ring at the mid cell in actively growing

cells and repositions itself near the pole through a spiral intermediate during

sporulation (Lutkenhaus, 2002), thus assigning its role as a major divisome protein.

Other division proteins DivIVA, MinC and MinD localize to the poles (Marston and

Errington, 1999b), whereas the Min proteins in E. coli (MinC, D, E), are organized

into extended membrane-associated spiral structures that wind around the cell

between the two poles, preventing the formation of the division septum by FtsZ at the

poles (Shih et al., 2003). Soj, which is distantly related to MinD but is involved in

chromosome segregation and transcriptional regulation, also undergoes dynamic, co-

operative movement (Marston and Errington, 1999a). Bacterial cells also possess

cytoskeletal proteins- MreB and Mbl that are homologs of actin and essential for cell

shape in bacilli. MreB and Mbl were shown to localize as spirals or helical filaments

along the long axis of the cell in E. coli and B. subtilis (Jones et al., 2001). It is still

unclear how most of the above mentioned proteins achieve their specific localization

within the cell.
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The localization of proteins associated with ribosomes and RNA provided

evidence of existence of transcription and translational compartmentalization in

bacteria. The RNA polymerase localized in concentrated regions on the nucleoid

called transcription foci corresponding to the sites of rRNA synthesis, and ribosomes

were present in the cytoplasmic spaces surrounding the nucleoid (Davies and Lewis,

2003; Lewis et al., 2000). Cold shock proteins (CSP) that are induced in the cells

upon temperature downshift are thought to bind to the nascent mRNA preventing the

secondary structure formation (Graumann et al., 1997) also colocalized with

ribosomes (Weber et al., 2001). A part of this work has dealt with this aspect (see

appendix, Pg. 103). Observing the localization of ribosomes, CspB, and DNA

simultaneously in the cell, has shown that CspB might mediate coupling of

transcription and translation, because it was seen to overlap between the peripheries

of nucleoid and ribosomes.

In conclusion, the era of fluorescence microscopic technique has given a new

approach to characterize cellular proteins in three dimensional context of the cell. The

release of the Bacillus genome sequence in 1998 showed that out of 4225 coding

genes, approx. 2000 represent yet uncharacterized genes encoding proteins of

unknown function (called ‘y’ genes). The systematic characterization of these ‘y’

genes will surely provide a better knowledge of the organism. Together with genetic,

biochemical and fluorescence microscopic techniques and with the anticipated further

advances of these techniques one can expect additional important applications and

discoveries that will give us a more detailed insight into the microbial cell.
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5.  Appendix

Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription

http://www.nature.com/cgi-taf/DynaPage.taf?file=/embor/journal/v2/n8/full/embor360.html&filetype=pdf

http://www.nature.com/cgi-taf/DynaPage.taf?file=/embor/journal/v2/n8/full/embor360.html&filetype=pdf
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5.2.1 Strains used in this work

Table 13
B. subtilis strains genotype references

EP58 smc::kan, Pspac-smc at amy locus Gift from R. Losick’s lab

PG 388 smc::kan (Graumann et al., 1998)

PG25 lacI-cfp at thr locus (Lemon et al., 2001)

PG26 lacO-cassette at359°, lacI cfp at thr locus P. Graumann

PG27 scpB-yfp, lacO-cassette at359°, lacI cfp at thr locus P. Graumann

PG28 dnaX-cfp (Lemon and Grossman, 2001)

AG1468 spo0J::spec (Ireton et al., 1994)

PL412 spoIIIE::spec Gift from R. Losick’s lab

KL210 dnaBts Gift from A. Grossman’s lab

MW2 cspB-gfp M. Weber

PG31 ypuI::tet P. Graumann

PG29 scpA-yfp, dnaX-cfp P. Graumann

PG30 scpB-yfp, dnaX-cfp P. Graumann

PG33 scpB-yfp, smc::kan, Pspac-smc at amy locus P. Graumann

PG34 scpA-yfp, spo0J::spec P. Graumann

PG35 scpB-yfp, spo0J::spec P. Graumann

PG36 ypuI::tet, spoIIIE::spec P. Graumann

PG37 scpA::tet, spoIIIE::spec P. Graumann

PG38 scpB::tet, spoIIIE::spec P. Graumann

PG39 scpB::tet, spo0J::spec P. Graumann

PG40 scpB::tet, Pxyl-scpB-cfp at amy locus P. Graumann

PG41 scpB::tet, Pxyl-scpB-cfp at amy locus, scpA-yfp P. Graumann

PG43 scpB::tet, smc::kan, Pspac-smc at amy locus P. Graumann
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5.2.2 List of plasmids and strains constructed in this work

E. coli plasmids constructed for general use:

Table 14a
Modified plasmid  Cloning description

(Plasmid/primers used)
Cloning sites used Original plasmid Unique cloning sites

pBsk Kan  Subcloned kan from pDG1 HindIII-EcoRV  pBskII(+) AccI, ApaI, ClaI, EcoRI, KpnI, HincII, PstI, SalI, SphI,
XhoI- BamHI, SacI, SpeI

pBsk tet Subcloned tet from pDG1515 BamHI, HindIII pBskII(+) BamHI, NotI, PstI, SacI, SmaI, SpeI, XbaI, XmaI-
ApaI, BstEII, EcoRI, HindIII, KpnI, SalI, SmaI, XhoI

pBsk Mls Subcloned erm from pDG646 HindIII, ClaI pBskII(+) EcoRI, EcoRV, HindIII, NotI, SmaI, SpeI, SphI, XmaI-
ApaI, ClaI, KpnI, XhoI

pBsk Cm Subcloned cat from p∆TE
(K. Eppelmann)

BamHI, PstI pBskII(+) SacI, NotI, XbaI, SpeI, BamHI-
SphI, PstI, EcoRV, HindIII, ClaI, XhoI, ApaI, KpnI,

p1164YFP/CFP Subcloned yfp/cfp from
pDG1187/1186

ApaI, SpeI pSG1164 KpnI, ApaI, XhoI, ClaI, EcoRV, EcoRI, PstI

p1151 strep Strep sequence from (162, 164)
Primer annealing cloning
method

EcoRI, SpeI pSG1151 KpnI, ApaI, XhoI, ClaI, EcoRV, EcoRI, PstI

PMutinYFP/CFPmcs mcs (228, 229)
Primer annealing cloning
method

HindIII, XmaIII pMutin-YFP/CFP HindIII, SalI, KpnI, ClaI, BglII, XmaIII

pJQhyperspank Subcloned  Phyperspank from
pDr111

HindIII, EcoRI pJQ43 HindIII, SalI, NheI, SphI
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Bacillus subtilis strains constructed in this work:

Table 14b

B. subtilis
Strain

        Genotype Modified E. coli
plasmid transformed
in B. subtilis

E. coli plasmid/
Strain

          Cloning details Primers used
(table 15)

JM1 rplA-bfp, specr pBrsp pBFP2 (Clontech)
pDG1726 (BGSC)

Cloned specr from pDG1726 at HindIII-BamHI,
and PCR product of C-terminal rplA at BamHI-
KpnI of pBFP2

3, 4

JM3 rplA-bfp, csp-gfp, specr MW2 (M. Weber) Chromosomal DNA from JM1 transformed in
MW2 cells

JM6 amy::smc-His Pxyl, cmr pSMX pMW6 (M. Weber) PCR product of smc digested with XbaI and
BamHI and cloned in SpeI-BamHI of pMW6

101, 102

JM8 (ypuG) scpA-yfp,cmr pyG pKL184
 (A. Grossman)

PCR product of C-terminal ypuG cloned at EcoRI-
XhoI in pKL184

64, 65

JM9 (ypuH) scpB-yfp, cmr pyH pSG1187 (P. Lewis) PCR product of C-terminal ypuH cloned at KpnI-
EcoRI in pSG1187

68, 69

JM10 amy::Pxyl cfp-scpB, specr pCHamy pSG1192 (P. Lewis) PCR product of ypuH cloned at KpnI-EcoRI in
pSG1192

127, 69

JM11 (ypuG) scpA::tet PCR knockout method P1 : 72; P2: 107
P3: 108; P4: 73

JM12 (ypuGH) scpAB::tet PCR knockout method P1: 72; P2: 107
P3: 93; P4: 73

JM13 (ypuH) scpB::tet PCR knockout method P1=72; P2: 92
P3: 93; P4: 73

JM14 scpA-yfp, cmr, amy::Pxyl cfp-scpB,
specr

Chromosomal DNA from JM10 transformed in
JM8 cells

JM15 scpB-yfp (cm::tet) JM9 transformed with pCm::tet

JM16 smc::kan, amy::Pspac smc(cm::tet) pCm::tet Plasmid pCm::tet transformed in EP58 cells

JM17 scpA-yfp, smc::kan,amy::Pspac
smc(cm::tet)

Chromosomal DNA from JM8 transformed in
JM16 cells

JM18 scpA::tet, amy::Pxyl cfp-scpB,
specr

Chromosomal DNA from JM11 transformed in
JM10 cells

B. subtilis
Strain

        Genotype Modified E. coli
plasmid transformed

E. coli plasmid/
Strain

          Cloning details Primers used
(table 15)
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in B. subtilis
JM19 scpA::tet, smc::kan,

amy::Pspac smc(cm::tet)
Chromosomal DNA from JM11 transformed in
JM16 cells

JM20 smc-gfp, cmr Psmc-gfp pSG1151 PCR product of C-terminal smc cloned at ApaI-
ClaI in pSG1151

103, 105

JM24 smc-strep, cmr Psmc-strep pSG1151strep PCR product of C-terminal smc cloned at ApaI-
ClaI in pSG1151strep

103, 105

JM25 smc-yfp, Pspac, mlsr psY mls pMutinYFP PCR product of C-terminal smc cloned at KpnI-
ClaI in pMutinYFP

194, 105

JM26 smc-cfp, Pspac, mlsr psC mls pMutinCFP PCR product of C-terminal smc cloned at KpnI-
ClaI in pMutinCFP

194, 105

JM27 dnaX-cfp, specr, smc-yfp, Pspac,
mlsr

pJCL61 pJCL61
(A. Grossman)

pJCL61 transformed in JM25

JM28 spoOJ::spec, smc-yfp, Pspac, mlsr Chromosomal DNA from JM25 transformed in
AG1468

JM29 scpA-yfp, cmr, smc-cfp, Pspac, mlsr Chromosomal DNA from JM27 transformed in
JM8

JM30 scpB-yfp, cmr , smc-cfp, Pspac,
mlsr

Chromosomal DNA from JM27 transformed in
JM9

JM31 scpA::tet, smc-yfp, Pspac, mlsr Chromosomal DNA from JM11 transformed in
JM25

JM32 scpB::tet, smc-yfp, Pspac, mlsr Chromosomal DNA from JM13 transformed in
JM25

JM33 ypuI::tet, smc-yfp, Pspac, mlsr Chromosomal DNA from PG31 transformed in
JM25

JM34 scpAB::tet, smc-yfp, Pspac, mlsr Chromosomal DNA from JM12 transformed in
JM25

JM35 Phyperspac smc-yfp, Pspac, mlsr

cmr
Chromosomal DNA from JM25 transformed in
CAS4

JM36 scpB-yfp, Phyperspac smc-yfp,
Pspac, mlsr cmr

Chromosomal DNA from JM35 transformed in
JM9

JM37 K37I, Phyperspack-smc-yfp, cmr,
mlsr, IPTG

pA*S pCAS5
(C. Andrei-Selmer)

Primer generated site-directed mutagenesis on
pCAS5 and transformed in JM25

230, 231
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B. subtilis
Strain

        Genotype Modified E. coli
plasmids transformed
in B. subtilis

E. coli Plasmid/
Strain

          Cloning details Primers used
(table 15)

JM38 D1155G, smc-yfp,  mlsr, IPTG pB*Sy psY mls Primer generated site-directed mutagenesis on
psY mls

222, 223

JM39 S1090R, smc-yfp, mlsr, IPTG pC*Sy psY mls Primer generated site directed mutagenesis on
psY mls

232, 234

JM40 p148yisB, kanr pYisB148 pDG148 PCR product of yisB cloned at HindIII-SphI in
pDG148

201, 202

JN1
sbcC-yfp, cmr pC87 pSG1187 PCR product of C-terminal sbcC cloned at

EcoRI- HindIII in pSG1187
140, 141

JN2
sbcC-cfp, cmr pC86 pSG1186 PCR product of C-terminal sbcC cloned at

EcoRI- HindIII in pSG1186
140, 141

JN3
sbcD-yfp, cmr pD87 pSG1187 PCR product of C-terminal sbcD cloned at

EcoRI- HindIII in pSG1187
142, 143

JN4
sbcD-cfp, cmr pD86 pSG1186 PCR product of C-terminal sbcD cloned at

EcoRI- HindIII in pSG1186
142, 143

JN5
sbcD.gfp, cmr pD1164 pSG1164 PCR product of C-terminal sbcD cloned at ApaI-

EcoRI in pSG1164
148, 143

JN6
sbcC-yfp, Pxyl pC87xyl pSG1164 subcloned EcoRI-SpeI sbcC-yfp fragment from

pC87

JN7
addA-gfp, cmr pA1164 pSG1164 PCR product of C-terminal addA cloned at ApaI-

EcoRI in pSG1164
150, 151

JM41 addB-yfp, mlsr pBy pMutin-YFP PCR product of C-terminal addB cloned at ClaI
in pMutin-YFP

213, 214

JM42 sbcC::sbcC-gfp, cmr pSbcKO pJQ43 PCR product of internal fragment of sbcC cloned
at HindIII- SphI in pJQ43

284, 285

JM43 parC-yfp, cmr pParCYFP pKL184 PCR product of C-terminal parC cloned at
EcoRI- XhoI in pKL184

30, 31

JM44 parE-yfp, mlsr pParEYFP PMutin-YFPmcs PCR product of C-terminal parE cloned at
HindIII- KpnI in pMutin-YFPmcs

270, 286

JM45 Phyperspank -parE pJQhyperspank ParE pJQhyperspank subcloned HindIII- NheI Phyperspank fragment
from pDr111

272, 273
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5.2.3 List of primers used

Table 15

Primers Sequence (5’-3’)
3 (rplAup) cgg atc ccg ttc tcg tcg ttt tcg caa aag g
4(rplAdw) ggg gta ccc cac ctt tta cgt taa aag ttg aag agt c
30( parCyfpdw) cgg ctc gag acc tcc ttg ttc tgt atg aag gcg cc
31( parCyfpup) cgg aat tcg ata aaa ttt gat ccg tc
64(ypuGcfpup) cgg aat ttc ccg aag caa gag gag g
65(ypuGcfpdw) ccg ctc gag agc ccc atg aat gga ttc ac
68 (ypuHyfpup) cgg agg tac cct tct tta tgc ggc agg
69 (ypuHyfpdw) ccg gaa ttc ggt ttt tat atc ttc gaa ggt ttg g
72 (ypuP1) acg tgg tac cgc tca ttt tca taa tag atc gg
73 (ypuP4)  atc gcc gcg ggg ctt ctt tcg ttt atg ccg
93 (ypuHP3) ttg atc ctt ttt tta taa cag gaa ttc gcc ctt cat cgc ctg ccg c
92 (ypuHP2) gaa caa cct gca caa ttg caa gag aaa act tta acc aaa cct tcg aag
101 (smx5) cga ttc tag att cct caa acg ttt aga cg
102 (smx3) ata tgg atc ctc tct gaa cga att ctt ttg
103 (sm-Cgfpup) gcg cgg gcc cga aca aaa aga aga ttt aac aga
105 (smgfpcla) cca tcg ata ccg cct ccc tga acg aat tct ttt gtt tct tc
107 (ypuGP2) gaa caa cct gca cca ttg caa gag ctg atg aaa aat cag ctg gtc c
108 (ypuGP3) ttg atc ctt ttt tta taa cag gaa ttc gta tca att ttc act tga tat tct tc
117 (ypuHaup) ccc aag ctt aca tta cgg gga gtg aat cc
118 (ypuhadw) cgg gat cct tct att tta tat ctt cga ag
122 (ypuGP2new) gaa caa cct gca cca ttg caa gag aaa act tta acc aaa cct tcg aag
123 (ypuGP1) gca ccg tca ata atg atc gcg c
127 (cH-amyup) tag ggtacc ggg gct tga tat cgt gaa ttg
140 (SbcCyfpup) att caa gct tgc aaa ctt gaa aac gag
141 (SbcCyfpdw) tcg gaa ttc acc acc gcc cat caa ctc aag tga tac ccg
143 (SbcDdw) tcg gaa ttc acc gcc ttt cgc atc ctc ctc ctc ttg aac
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Primers Sequence (5’-3’)
148 (SbcDupn) att cgg gcc ctt tgc atc gcc cgc aaa cg
150 (addAup) att cgg gcc cag ctg agc tgg acc tac
151 (addAdw) tcg gaa ttc acc acc gcc taa tgt cag aat gtg ccc
162 (strepup)  att tca ctg ctt gga gcc acc cgc agt tcg aaa aat aag cat gca
164 (strepdwn) gtg acg aac ctc ggt ggg cgt caa gct ttt tat tcg tac gtg atc
193 (69cla) cca tcg atg gtt ttt ata tct tcg aag gtt tgg
194 (103kpn) ggg gta ccg aac aaa aag aag att taa cag a
198 (smc CNco) cat gcc atg ggc ttt aac gac aca ttc gtc
201 (yisBhind3) atc aag ctt gag ttg atg taa ggg ag
202 (yisBSph1) gct tgc atg cga caa att ata tag acc cc
213 (AddBdw) cca tcg ata ccg cct ccg gaa tgt tca ttg cca tc
214 (AddBup) ttg att tat cga tta cac att c
209 (fpn) agg gtg ggc cag ggc acg ggc (downstream primer ~180bp inside of GFP)
222 (mutSMC) gtgccgttttgcgtccttgccgcagtagaggctgcgctcgac
223 (mutSMC3) gtcgagcgcagcctctactgcggcaaggacgcaaaacggcac
228 (mcs5) agc ttgtcg acg aat tcg gta ccc cat ggg gat cca atc gat aga tct ggg gga ggt c
229 (mcs3) ggc cga cct ccc cca gat cta tcg atg gat ccc cat ggg gta ccg aat tcg tcg aca
230 (K37Iup) gtcgggccgaacggaagcggaataagcaacatcacggatgcc
231 (K37Iup-r) ggcatccgtgatgttgcttattccgcttccgttcggcccgac
232 (S1099Rup) caaaacttaaacctcctgacgaggcggagacgtgcg
234 (S1099Rup-r) cgcacgctctccgcctcgcaggaggtttaagttttg
270 (ParEGFPup)  tac caa gct ttt at gat ca tt cat gcg atc
271 (ParEGFPdw) cgc gga tcc tta aac ctc ctc agc gac
272 (ParE-Nup) tca taa gct ttg aaa ggg gtt tgt acg ttt g
273 (ParE-Nup) cag gct agc taa caa aaa cgc cag act ctc
284 (SbcKOdw) aca tgc atg caa tct gcc ctt cgc ctc ttg
285 (SbcKOup) tca taa gct tca aac agg aac agc ttt cac g
259 (S-Exn1) acc gga tcc cgc ttc cgt tcg gcc cga c (primer extension)
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5.2.4 Primer annealing temperatures

Table displaying the annealing temperatures of oligonucleotides, calculated as described in 2.1.5

Table16
         primer length (L)

G + C 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 31,24 33,48 35,47 37,25 38,85 40,30 41,62 42,82 43,93 44,94 45,88 46,74 47,55 48,30 49,00 49,65 50,27 50,85 51,39 51,90 52,38 52,84 53,27 53,68 54,08
2 33,80 35,89 37,74 39,41 40,90 42,25 43,48 44,60 45,63 46,58 47,45 48,26 49,01 49,71 50,37 50,98 51,55 52,09 52,59 53,07 53,52 53,95 54,35 54,74 55,10
3 36,36 38,30 40,02 41,56 42,95 44,20 45,35 46,39 47,34 48,22 49,03 49,78 50,48 51,13 51,73 52,30 52,83 53,33 53,80 54,24 54,66 55,06 55,43 55,79 56,13
4 38,93 40,71 42,30 43,72 45,00 46,16 47,21 48,17 49,05 49,86 50,61 51,30 51,94 52,54 53,10 53,62 54,11 54,57 55,01 55,41 55,80 56,16 56,51 56,84 57,15
5 41,49 43,12 44,58 45,88 47,05 48,11 49,07 49,95 50,76 51,50 52,18 52,82 53,41 53,96 54,47 54,95 55,39 55,82 56,21 56,59 56,94 57,27 57,59 57,89 58,18
6 44,05 45,54 46,86 48,04 49,10 50,06 50,94 51,73 52,47 53,14 53,76 54,34 54,87 55,37 55,83 56,27 56,68 57,06 57,42 57,76 58,08 58,38 58,67 58,94 59,20
7 46,61 47,95 49,13 50,19 51,15 52,01 52,80 53,52 54,18 54,78 55,34 55,86 56,34 56,78 57,20 57,59 57,96 58,30 58,62 58,93 59,22 59,49 59,75 59,99 60,23
8 49,18 50,36 51,41 52,35 53,20 53,97 54,66 55,30 55,88 56,42 56,92 57,37 57,80 58,20 58,57 58,91 59,24 59,54 59,83 60,10 60,36 60,60 60,83 61,04 61,25
9 51,74 52,77 53,69 54,51 55,25 55,92 56,53 57,08 57,59 58,06 58,49 58,89 59,26 59,61 59,93 60,24 60,52 60,78 61,04 61,27 61,49 61,71 61,91 62,09 62,28

10 54,30 55,18 55,97 56,67 57,30 57,87 58,39 58,87 59,30 59,70 60,07 60,41 60,73 61,02 61,30 61,56 61,80 62,03 62,24 62,44 62,63 62,81 62,98 63,15 63,30
11 56,86 57,59 58,24 58,83 59,35 59,82 60,25 60,65 61,01 61,34 61,65 61,93 62,19 62,44 62,67 62,88 63,08 63,27 63,45 63,61 63,77 63,92 64,06 64,20 64,33
12 59,43 60,01 60,52 60,98 61,40 61,78 62,12 62,43 62,72 62,98 63,22 63,45 63,66 63,85 64,03 64,20 64,36 64,51 64,65 64,79 64,91 65,03 65,14 65,25 65,35
13 61,99 62,42 62,80 63,14 63,45 63,73 63,98 64,21 64,43 64,62 64,80 64,97 65,12 65,27 65,40 65,53 65,64 65,75 65,86 65,96 66,05 66,14 66,22 66,30 66,38
14 64,55 64,83 65,08 65,30 65,50 65,68 65,85 66,00 66,13 66,26 66,38 66,49 66,59 66,68 66,77 66,85 66,93 67,00 67,06 67,13 67,19 67,25 67,30 67,35 67,40
15 67,11 67,24 67,36 67,46 67,55 67,63 67,71 67,78 67,84 67,90 67,95 68,00 68,05 68,09 68,13 68,17 68,21 68,24 68,27 68,30 68,33 68,35 68,38 68,40 68,43
16 69,68 69,65 69,63 69,62 69,60 69,59 69,57 69,56 69,55 69,54 69,53 69,52 69,51 69,51 69,50 69,49 69,49 69,48 69,48 69,47 69,47 69,46 69,46 69,45 69,45
17 72,24 72,06 71,91 71,77 71,65 71,54 71,44 71,34 71,26 71,18 71,11 71,04 70,98 70,92 70,87 70,82 70,77 70,72 70,68 70,64 70,61 70,57 70,54 70,51 70,48
18 74,80 74,48 74,19 73,93 73,70 73,49 73,30 73,13 72,97 72,82 72,68 72,56 72,44 72,33 72,23 72,14 72,05 71,97 71,89 71,81 71,74 71,68 71,62 71,56 71,50
19 77,36 76,89 76,47 76,09 75,75 75,44 75,16 74,91 74,68 74,46 74,26 74,08 73,91 73,75 73,60 73,46 73,33 73,21 73,09 72,99 72,88 72,79 72,69 72,61 72,53
20 79,93 79,30 78,74 78,25 77,80 77,40 77,03 76,69 76,38 76,10 75,84 75,60 75,37 75,16 74,97 74,78 74,61 74,45 74,30 74,16 74,02 73,89 73,77 73,66 73,55
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