25 research outputs found

    Novel Soft Meals Developed by 3D Printing

    Get PDF
    Recently, 3D printing is being applied to various fields. 3D printing of foods has been developed; however, there are many challenges. To overcome the challenges, we have started a new research group named “Yonezawa Itadakimasu Research Group,” to focus on the development of 3D printing applications for manufacturing food. We have developed Novel jelly foods that are shaped by 3D printed molds. Fused deposition modeling (FDM) 3D printer for food manufacturing makes the 3D printed molds. First step of making 3D printing mold is to print a cast. Then, food grade silicone is poured into the cast to make a mold. This type of 3D printed mold can be used widely, such as making sweets, restaurant menus, and care foods by changing the design depending on the use of application. Secondly, we started to develop 3D food printers. This type of challenge to develop future foods by 3D printing technology may have a major impact on the care food because the looks of foods are important and will be improved by 3D printing

    Detection of a new molecular cloud in the LHAASO J2108+5157 region supporting a hadronic PeVatron scenario

    Get PDF
    PeVatrons are the most powerful naturally occurring particle accelerators in the Universe. The identification of counterparts associated to astrophysical objects such as dying massive stars, molecular gas, star-forming regions, and star clusters is essential to clarify the underlying nature of the PeV emission, i.e., hadronic or leptonic. We present 12,13^{12,13}CO(J=2\rightarrow1) observations made with the 1.85~m radio-telescope of the Osaka Prefecture University toward the Cygnus OB7 molecular cloud, which contains the PeVatron candidate LHAASO J2108+5157. We investigate the nature of the sub-PeV (gamma-ray) emission by studying the nucleon density determined from the content of HI and H2_2, derived from the CO observations. In addition to MML[2017]4607, detected via the observations of the optically thick 12^{12}CO(J=1\rightarrow0) emission, we infer the presence of an optically thin molecular cloud, named [FKT-MC]2022, whose angular size is 1.1±\pm0.2^{\circ}. We propose this cloud as a new candidate to produce the sub-PeV emission observed in LHAASO J2108+5157. Considering a distance of 1.7 kpc, we estimate a nucleon (HI+H2_2) density of 37±\pm14 cm3^{-3}, and a total nucleon mass(HI+H2_2) of 1.5±\pm0.6×\times104^4 M_{\odot}. On the other hand, we confirm that Kronberger 82 is a molecular clump with an angular size of 0.1^{\circ}, a nucleon density \sim 103^3 cm3^{-3}, and a mass \sim 103^3 M_{\odot}. Although Kronberger 82 hosts the physical conditions to produce the observed emission of LHAASO J2108+5157, [FKT-MC]2022 is located closer to it, suggesting that the latter could be the one associated to the sub-PeV emission. Under this scenario, our results favour a hadronic origin for the emission.Comment: Accepted for publication in PASJ (Publications of the Astronomical Society of Japan). Accepted on 06-Mar-2023. 20 pages, 12 figures, 12 table

    Calibration of Photomultiplier Tubes for the Fluorescence Detector of Telescope Array Experiment using a Rayleigh Scattered Laser Beam

    Full text link
    We performed photometric calibration of the PhotoMultiplier Tube (PMT) and readout electronics used for the new fluorescence detectors of the Telescope Array (TA) experiment using Rayleigh scattered photons from a pulsed nitrogen laser beam. The experimental setup, measurement procedure, and results of calibration are described. The total systematic uncertainty of the calibration is estimated to be 7.2%. An additional uncertainty of 3.7% is introduced by the transport of the calibrated PMTs from the laboratory to the TA experimental site.Comment: 43 pages, 15 figure

    Photometry and Polarimetry of 2010 XC15_{15}: Observational Confirmation of E-type Near-Earth Asteroid Pair

    Full text link
    Asteroid systems such as binaries and pairs are indicative of physical properties and dynamical histories of the Small Solar System Bodies. Although numerous observational and theoretical studies have been carried out, the formation mechanism of asteroid pairs is still unclear, especially for near-Earth asteroid (NEA) pairs. We conducted a series of optical photometric and polarimetric observations of a small NEA 2010 XC15_{15} in 2022 December to investigate its surface properties. The rotation period of 2010 XC15_{15} is possibly a few to several dozen hours and color indices of 2010 XC15_{15} are derived as gr=0.435±0.008g-r=0.435\pm0.008, ri=0.158±0.017r-i=0.158\pm0.017, and rz=0.186±0.009r-z=0.186\pm0.009 in the Pan-STARRS system. The linear polarization degrees of 2010 XC15_{15} are a few percent at the phase angle range of 58^{\circ} to 114^{\circ}. We found that 2010 XC15_{15} is a rare E-type NEA on the basis of its photometric and polarimetric properties. Taking the similarity of not only physical properties but also dynamical integrals and the rarity of E-type NEAs into account, we suppose that 2010 XC15_{15} and 1998 WT24_{24} are of common origin (i.e., asteroid pair). These two NEAs are the sixth NEA pair and first E-type NEA pair ever confirmed, possibly formed by rotational fission. We conjecture that the parent body of 2010 XC15_{15} and 1998 WT24_{24} was transported from the main-belt through the ν6\nu_6 resonance or Hungaria region.Comment: Resubmitted to AAS Journals. Any comments are welcom

    The Telescope Array Experiment: Hybrid Measurement of Ultra High Energy Cosmic Rays in Northern Hemisphere

    Get PDF
    Abstract The result of AGASA shows the extension of the cosmic ray energy spectrum above the GZK cut-off. Several new generation experiments are planned or under construction to identify the origin of such ultra high energy (UHE) cosmic rays exceeding the cut-off. We report here the design of hybrid Telescope Array (TA) and introduce plans of improving the accuracy of measuring the energy spectrum by the hybrid measurement of ground array and air fluorescence telescope

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    The ALPACA Project

    No full text
    We have started up the ALPACA (Andes Large area PArticle detector for Cosmic ray physics and Astronomy) project. The ALPACA experiment is composed of an 83,000 m2 air shower array and a 5,400 m2 underground muon detector array to make wide field-of-view high-sensitivity observations of high-energy cosmic rays/cosmic gamma rays on the Cerro Estuqueria highland, 4,740 m above sea level around Mount Chacaltaya, Bolivia. We briefly report on the design concept of the new project and its physics targets

    The ALPACA Project

    No full text
    We have started up the ALPACA (Andes Large area PArticle detector for Cosmic ray physics and Astronomy) project. The ALPACA experiment is composed of an 83,000 m2 air shower array and a 5,400 m2 underground muon detector array to make wide field-of-view high-sensitivity observations of high-energy cosmic rays/cosmic gamma rays on the Cerro Estuqueria highland, 4,740 m above sea level around Mount Chacaltaya, Bolivia. We briefly report on the design concept of the new project and its physics targets
    corecore