748 research outputs found

    Apparatus and method using a holographic optical element for converting a spectral distribution to image points

    Get PDF
    A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system

    Bayesian inference of substrate properties from film behavior

    Get PDF
    We demonstrate that by observing the behavior of a film deposited on a substrate, certain features of the substrate may be inferred with quantified uncertainty using Bayesian methods. We carry out this demonstration on an illustrative film/substrate model where the substrate is a Gaussian random field and the film is a two-component mixture that obeys the Cahn–Hilliard equation. We construct a stochastic reduced order model to describe the film/substrate interaction and use it to infer substrate properties from film behavior. This quantitative inference strategy may be adapted to other film/substrate systems.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0008926

    Psychosocial health among immigrants in central and southern Europe.

    Get PDF
    Migration exposes people to a number of risks that threaten their health, including those related to psychosocial health. Self-perceived health is usually the main indicator used to assess psychosocial health. Electronic databases were used to examine the literature on the psychosocial health of immigrants in Europe and of North Africans living in their own countries. Immigrants of various ethnic groups show a similar risk of psychosocial disorders but generally present a higher risk than the local population. This risk is related to gender (being higher in women), poor socio-economic status and acculturation, discrimination, time elapsed since migration and age on arrival in the new country. Although the stressors and situations the different ethnic groups experience in the host country may be shared, the way they deal with them may differ according to cultural factors. There is a need to collect detailed data on psychosocial health among the various immigrant groups in Europe, as well as to monitor this aspect in North African residents who lack access to specific services

    Bayesian reconstruction of binary media with unresolved fine-scale spatial structures

    Get PDF
    We present a Bayesian technique to estimate the fine-scale properties of a binary medium from multiscale observations. The binary medium of interest consists of spatially varying proportions of low and high permeability material with an isotropic structure. Inclusions of one material within the other are far smaller than the domain sizes of interest, and thus are never explicitly resolved. We consider the problem of estimating the spatial distribution of the inclusion proportion, F(x), and a characteristic length-scale of the inclusions, δ, from sparse multiscale measurements. The observations consist of coarse-scale (of the order of the domain size) measurements of the effective permeability of the medium (i.e., static data) and tracer breakthrough times (i.e., dynamic data), which interrogate the fine scale, at a sparsely distributed set of locations. This ill-posed problem is regularized by specifying a Gaussian process model for the unknown field F(x) and expressing it as a superposition of Karhunen–Loève modes. The effect of the fine-scale structures on the coarse-scale effective permeability i.e., upscaling, is performed using a subgrid-model which includes δ as one of its parameters. A statistical inverse problem is posed to infer the weights of the Karhunen–Loève modes and δ, which is then solved using an adaptive Markov Chain Monte Carlo method. The solution yields non-parametric distributions for the objects of interest, thus providing most probable estimates and uncertainty bounds on latent structures at coarse and fine scales. The technique is tested using synthetic data. The individual contributions of the static and dynamic data to the inference are also analyzed.United States. Dept. of Energy. National Nuclear Security Administration (Contract DE-AC04_94AL85000

    Diffeomorphic random sampling using optimal information transport

    Full text link
    In this article we explore an algorithm for diffeomorphic random sampling of nonuniform probability distributions on Riemannian manifolds. The algorithm is based on optimal information transport (OIT)---an analogue of optimal mass transport (OMT). Our framework uses the deep geometric connections between the Fisher-Rao metric on the space of probability densities and the right-invariant information metric on the group of diffeomorphisms. The resulting sampling algorithm is a promising alternative to OMT, in particular as our formulation is semi-explicit, free of the nonlinear Monge--Ampere equation. Compared to Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when a large number of samples from a low dimensional nonuniform distribution is needed.Comment: 8 pages, 3 figure

    On dimension reduction in Gaussian filters

    Full text link
    A priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. In this setting, the solution of an inverse problem is parameterized by a low-dimensional basis that is often obtained from the truncated Karhunen-Loeve expansion of the prior distribution. For high-dimensional inverse problems equipped with smoothing priors, this technique can lead to drastic reductions in parameter dimension and significant computational savings. In this paper, we extend the concept of a priori dimension reduction to non-stationary inverse problems, in which the goal is to sequentially infer the state of a dynamical system. Our approach proceeds in an offline-online fashion. We first identify a low-dimensional subspace in the state space before solving the inverse problem (the offline phase), using either the method of "snapshots" or regularized covariance estimation. Then this subspace is used to reduce the computational complexity of various filtering algorithms - including the Kalman filter, extended Kalman filter, and ensemble Kalman filter - within a novel subspace-constrained Bayesian prediction-and-update procedure (the online phase). We demonstrate the performance of our new dimension reduction approach on various numerical examples. In some test cases, our approach reduces the dimensionality of the original problem by orders of magnitude and yields up to two orders of magnitude in computational savings

    Meningococcal disease in children in Merseyside, England:a 31 year descriptive study

    Get PDF
    Meningococcal disease (MCD) is the leading infectious cause of death in early childhood in the United Kingdom, making it a public health priority. MCD most commonly presents as meningococcal meningitis (MM), septicaemia (MS), or as a combination of the two syndromes (MM/MS). We describe the changing epidemiology and clinical presentation of MCD, and explore associations with socioeconomic status and other risk factors. A hospital-based study of children admitted to a tertiary children's centre, Alder Hey Children's Foundation Trust, with MCD, was undertaken between 1977 to 2007 (n = 1157). Demographics, clinical presentations, microbiological confirmation and measures of deprivation were described. The majority of cases occurred in the 1-4 year age group and there was a dramatic fall in serogroup C cases observed with the introduction of the meningococcal C conjugate (MCC) vaccine. The proportion of MS cases increased over the study period, from 11% in the first quarter to 35% in the final quarter. Presentation with MS (compared to MM) and serogroup C disease (compared to serogroup B) were demonstrated to be independent risk factors for mortality, with odds ratios of 3.5 (95% CI 1.18 to 10.08) and 2.18 (95% CI 1.26 to 3.80) respectively. Cases admitted to Alder Hey were from a relatively more deprived population (mean Townsend score 1.25, 95% CI 1.09 to 1.41) than the Merseyside reference population. Our findings represent one of the largest single-centre studies of MCD. The presentation of MS is confirmed to be a risk factor of mortality from MCD. Our study supports the association between social deprivation and MCD

    An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems

    Full text link
    We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large-scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method

    Variability monitoring of the hydroxyl maser emission in G12.889+0.489

    Full text link
    Through a series of observations with the Australia Telescope Compact Array we have monitored the variability of ground-state hydroxyl maser emission from G12.889+0.489 in all four Stokes polarisation products. These observations were motivated by the known periodicity in the associated 6.7-GHz methanol maser emission. A total of 27 epochs of observations were made over 16 months. No emission was seen from either the 1612 or 1720 MHz satellite line transitions (to a typical five sigma upper limit of 0.2 Jy). The peak flux densities of the 1665 and 1667 MHz emission were observed to vary at a level of ~20% (with the exception of one epoch which dropped by <40%). There was no distinct flaring activity at any epoch, but there was a weak indication of periodic variability, with a period and phase of minimum emission similar to that of methanol. There is no significant variation in the polarised properties of the hydroxyl, with Stokes Q and U flux densities varying in accord with the Stokes I intensity (linear polarisation, P, varying by <20%) and the right and left circularly polarised components varying by <33% at 1665-MHz and <38% at 1667-MHz. These observations are the first monitoring observations of the hydroxyl maser emission from G12.889+0.489.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression

    Get PDF
    The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts.United States. Dept. of Energy. Office of Fusion Energy Sciences (Award DE-FC02-99ER54512)United States. Dept. of Energy. Office of Science (Contract DE-AC05-06OR23177)United States. Dept. of Energy. Office of Advanced Scientific Computing Research (Award DE-SC0007099
    corecore