6 research outputs found

    The cell cooling coefficient: A standard to define heatrejection from lithium-ion batteries

    Get PDF
    Lithium-ion battery development is conventionally driven by energy and power density targets, yet the performance of a lithium-ion battery pack is often restricted by its heat rejection capabilities. It is therefore common to observe elevated cell temperatures and large internal thermal gradients which, given that impedance is a function of temperature, induce large current inhomogeneities and accelerate cell-level degradation. Battery thermal performance must be better quantified to resolve this limitation, but anisotropic thermal conductivity and uneven internal heat generation rates render conventional heat rejection measures, such as the Biot number, unsuitable. The Cell Cooling Coefficient (CCC) is introduced as a new metric which quantifies the rate of heat rejection. The CCC (units W.K−1) is constant for a given cell and thermal management method and is therefore ideal for comparing the thermal performance of different cell designs and form factors. By enhancing knowledge of pack-wide heat rejection, uptake of the CCC will also reduce the risk of thermal runaway. The CCC is presented as an essential tool to inform the cell down-selection process in the initial design phases, based solely on their thermal bottlenecks. This simple methodology has the potential to revolutionise the lithium-ion battery industry

    Lithium ion battery degradation: what you need to know

    Get PDF
    The expansion of lithium-ion batteries from consumer electronics to larger-scale transport and energy storage applications has made understanding the many mechanisms responsible for battery degradation increasingly important. The literature in this complex topic has grown considerably; this perspective aims to distil current knowledge into a succinct form, as a reference and a guide to understanding battery degradation. Unlike other reviews, this work emphasises the coupling between the different mechanisms and the different physical and chemical approaches used to trigger, identify and monitor various mechanisms, as well as the various computational models that attempt to simulate these interactions. Degradation is separated into three levels: the actual mechanisms themselves, the observable consequences at cell level called modes and the operational effects such as capacity or power fade. Five principal and thirteen secondary mechanisms were found that are generally considered to be the cause of degradation during normal operation, which all give rise to five observable modes. A flowchart illustrates the different feedback loops that couple the various forms of degradation, whilst a table is presented to highlight the experimental conditions that are most likely to trigger specific degradation mechanisms. Together, they provide a powerful guide to designing experiments or models for investigating battery degradation

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Thermal evaluation of lithium-ion batteries: Defining the cylindrical cell cooling coefficient

    Get PDF
    Managing temperatures of lithium-ion cells in battery packs is crucial to ensuring their safe operation. However, thermal information provided on typical cell datasheets is insufficient to identify which cells can be easily thermally managed. The Cell Cooling Coefficient (CCC) aims to fill this gap, as a metric that defines the thermal dissipation from a cell when rejecting its own heat. While the CCC has been defined and used for pouch cells, no similar measure has been proven for cylindrical cells. This work successfully defines and measures the CCC for cylindrical cells under base cooling (CCCBase), defined as the heat rejected through the base divided by the temperature difference from the base to positive cap. Using a non-standard, electrically optimised connection, the maxima for CCCBase of an LG M50T (21700) and Samsung 30Q (18650) cell are successfully measured to be 0.139 and 0.115 W K−1, respectively. Even though the 21700 has a higher CCCBase, indicating that the cell can be cooled more efficiently, comparing the CCCBase per area the 18650 can reject 13 % more heat for a given cooled area. A worked example demonstrates the equal importance of understanding heat generation alongside the CCC, for both cell design and down selecting cells

    How to enable large format 4680 cylindrical lithium-ion batteries

    Get PDF
    The demand for large format lithium-ion batteries is increasing, because they can be integrated and controlled easier at a system level. However, increasing the size leads to increased heat generation risking overheating. 1865 and 2170 cylindrical cells can be both base cooled or side cooled with reasonable efficiency. Large format 4680 cylindrical cells have become popular after Tesla filed a patent. If these cells are to become widely used, then understanding how to thermally manage them is essential. In this work, we create a model of a 4680 cylindrical cell, and use it to study different thermal management options. Our work elucidates the comprehensive mechanisms how the hot topic ‘tabless design’ improves the performance of 4680 cell and makes any larger format cell possible while current commercial cylindrical cells cannot be simply scaled up to satisfy power and thermal performance. As a consequence, the model identifies the reason for the tabless cell's release: the thermal performance of the 4680 tabless cell can be no worse than that of the 2170 cell, while the 4680 tabless tab cell boasts 5.4 times the energy and 6.9 times the power. Finally, via the model, a procedure is proposed for choosing the thermal management for large format cylindrical cell for maximum performance. As an example, we demonstrate that the best cooling approach for the 4680 tabless cell is base cooling, while for the 2170 LG M50T cell it is side cooling. We conclude that any viable large format cylindrical cell must include a continuous tab (or ‘tabless’) design and be cooled through its base when in a pack. The results are of immediate interest to both cell manufacturers and battery pack designers, while the developed modelling and parameterization framework is of wider use for all energy storage system design

    The surface cell cooling coefficient: a standard to define heat rejection from lithium ion battery pouch cells

    Get PDF
    There is no universal and quantifiable standard to compare a given cell model's capability to reject heat. The consequence of this is suboptimal cell designs because cell manufacturers do not have a metric to optimise. The Cell Cooling Coefficient for pouch cell tab cooling (CCC tabs ) defines a cell's capability to reject heat from its tabs. However, surface cooling remains the thermal management approach of choice for automotive and other high-power applications. This study introduces a surface Cell Cooling Coefficient, CCC surf which is shown to be a fundamental property of a lithium-ion cell. CCC surf is found to be considerably larger than CCC tabs , and this is a trend anticipated for every pouch cell currently commercially available. However, surface cooling induces layer-to-layer nonuniformity which is strongly linked to reduced cell performance and reduced cell lifetime. Thus, the Cell Cooling Coefficient enables quantitative comparison of each cooling method. Further, a method is presented for using the Cell Cooling Coefficients to inform the optimal design of a battery pack thermal management system. In this manner, implementation of the Cell Cooling Coefficient can transform the industry, by minimising the requirement for computationally expensive modelling or time consuming experiments in the early stages of battery-pack design
    corecore