166 research outputs found
A hybrid radiation detector for simultaneous spatial and temporal dosimetry
In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation
Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase
The regulation of antigen processing and presentation to MHC class I-restricted cytolytic T lymphocytes was studied in cells infected with murine cytomegalovirus. Recognition by cytolytic T lymphocytes of the phosphoprotein pp89, the immunodominant viral antigen expressed in the immediate-early phase of infection, was selectively prevented during the subsequent expression of viral early genes. The surface expression of MHC class I glycoproteins and their capacity to present externally added pp89-derived antigenic peptides were not affected. Because recognition of several other antigens occurred during the early phase, a general failure in processing and presentation was excluded. Since neither rate of synthesis, amount, stability, nor nuclear transport of pp89 was modified, the failure in recognition indicates a selective interference with pp89 antigen processing and presentation
Life is Getting Better: Societal Evolution and Fit with Human Nature
Human society has changed much over the last centuries and this process of âmodernizationâ has profoundly affected the lives of individuals; currently we live quite different lives from those forefathers lived only five generations ago. There is difference of opinion as to whether we live better now than before and consequently there is also disagreement as to whether we should continue modernizing or rather try to slow the process down. Quality-of-life in a society can be measured by how long and happy its inhabitants live. Using these indicators I assess whether societal modernization has made life better or worse. Firstly I examine findings of present day survey research. I start with a cross-sectional analysis of 143 nations in the years 2000â2008 and find that people live longer and happier in todayâs most modern societies. Secondly I examine trends in modern nations over the last decade and find that happiness and longevity have increased in most cases. Thirdly I consider the long-term and review findings from historical anthropology, which show that we lived better in the early hunter-gatherer society than in the later agrarian society. Together these data suggest that societal evolution has worked out differently for the quality of human life, first negatively, in the change from a hunter-gatherer existence to agriculture, and next positively, in the more recent transformation from an agrarian to an industrial society. We live now longer and happier than ever before
Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaquesâ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHCâpeptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses
- âŠ