2,605 research outputs found

    Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition

    Get PDF
    Stable, porous, nanostructured composite electrodes were successfully fabricated via the inexpensive and scalable method of electrospray deposition, in which a dissolved solute is deposited onto a substrate using an electric field to drive droplet migration. The desirable characteristics of high porosity and high surface area were obtained under conditions that favored complete solvent evaporation from the electrospray droplets prior to contact with the substrate. Solid acid (CsH_2PO_4) feature sizes of 100 nm were obtained from electrosprayed water–methanol solutions with 10 g L^(−1) CsH_2PO_4 and 5 g L^(−1) Pt catalyst particles suspended using polyvinylpyrrolidone (PVP). Alternative additives such as Pt on carbon and carbon-nanotubes (CNTs) were also successfully incorporated by this route, and in all cases the PVP could be removed from the electrode by oxygen plasma treatment without damage to the structure. In the absence of additives (Pt, Pt/C and CNTs), the feature sizes were larger, 300 nm, and the structure morphologically unstable, with significant coarsening evident after exposure to ambient conditions for just two days. Electrochemical impedance spectroscopy under humidified hydrogen at 240 °C indicated an interfacial impedance of ~1.5 Ω cm^2 for the Pt/CsH_2PO_4 composite electrodes with a total Pt loading of 0.3 ± 0.2 mg cm^(−2). This result corresponds to a 30-fold decrease in Pt loading relative to mechanically milled electrodes with comparable activity, but further increases in activity and Pt utilization are required if solid acid fuel cells are to attain widespread commercial adoption

    Formation of o-Tyrosine and Dityrosine in Proteins during Radiolytic and Metal-catalyzed Oxidation

    Get PDF
    To evaluate their usefulness as chemical indicators of cumulative oxidative damage to proteins, we studied the kinetics and extent of formation of ortho-tyrosine (0-Tyr), dityrosine (DT), and dityrosine-like fluorescence (Ex = 3 17 nm, E,,, = 407 nm) in the model proteins RNase and lysozyme exposed to radiolytic and metalcatalyzed (H20z/Cu2+) oxidation (MCO). Although there were protein-dependent differences, o-Tyr, DT, and fluorescence increased coordinately during oxidation of the proteins in both oxidation systems. The contribution of DT to total dityrosine-like fluorescence in oxidized proteins varied from 2-10070, depending on the protein, type of oxidation, and extent of oxidative damage. In proteins exposed to MCO, DT typically accounted for \u3e50% of the fluorescence at DT wavelengths. These studies indicate that o-Tyr and DT should be useful chemical markers of cumulative exposure of proteins to MCO in vitro and in vivo

    Graduate Program Redesign to Prepare 21st Century Educational Leaders

    Get PDF
    The content of this article is focused on the theme of curriculum renewal and redesign in three university-based principal preparation programs from diverse sections of the country: Campbell University in North Carolina, the University of Northern Iowa, and the University of Texas at Brownsville.Questions originally posed to representatives of the three principal preparation programs were as follows: • To what state or national standards are the programs aligned?• How did program faculty engage in curriculum redesign and ongoing renewal?• What delivery systems are offered: cohort, online, hybrid, etc.?• How are field experiences and internships conducted?• How do faculty members assess candidates’ mastery of standards-aligned competencies? The redesign processes undertaken by faculty members from the three leadership preparation programs were explored by addressing common components culled from the questions: standards, curriculum renewal and redesign, field experiences and internships, assessment, and lessons learned. Conclusions summarize the common points that have made the processes successful. It is the authors’ hope that the lessons learned from our combined experiences with principal preparation program redesign will be helpful to educational leadership faculty members engaged in similar processes at other colleges or universities

    Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally.

    No full text
    BACKGROUND: Malaria in humans is caused by apicomplexan parasites belonging to 5 species of the genus Plasmodium. Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease is not known. Dimorphism in defined genes has led to P. ovale parasites being divided into classic and variant types. We hypothesized that these dimorphs represent distinct parasite species. METHODS: Multilocus sequence analysis of 6 genetic characters was carried out among 55 isolates from 12 African and 3 Asia-Pacific countries. RESULTS: Each genetic character displayed complete dimorphism and segregated perfectly between the 2 types. Both types were identified in samples from Ghana, Nigeria, São Tomé, Sierra Leone, and Uganda and have been described previously in Myanmar. Splitting of the 2 lineages is estimated to have occurred between 1.0 and 3.5 million years ago in hominid hosts. CONCLUSIONS: We propose that P. ovale comprises 2 nonrecombining species that are sympatric in Africa and Asia. We speculate on possible scenarios that could have led to this speciation. Furthermore, the relatively high frequency of imported cases of symptomatic P. ovale infection in the United Kingdom suggests that the morbidity caused by ovale malaria has been underestimated

    161. The Potential Role of Extensor Muscle Fatigue in the Onset of Intervertebral Disc Degeneration: A Novel In Vivo Model

    Get PDF
    BACKGROUND CONTEXT: Occupation is strongly correlated to low back pain (LBP). Specific occupational activities associated with low back pain include poor posture, whole body vibration, and repetitive lifting. These activities have a common link: they result in fatigue of the primary spinal extensor musculature. This fatigue may lead to increased intervertebral loading - a stimulus for disc degeneration. If true, this association could provide a vital connection between detrimental physical activities and LBP. However, the link between muscle fatigue and increased load across the disc space has never been quantified in vivo. PURPOSE: The purpose of this study was to develop and test a wireless multi-axial force-sensing implant and large animal model of primary extensor muscle fatigue. Combined, these tools allow measurement of in vivo spinal forces during muscle fatigue to quantify changes in spine loading

    Association Between Body Mass Index and Clinical and Endoscopic Features of Eosinophilic Esophagitis

    Get PDF
    Because eosinophilic esophagitis (EoE) causes dysphagia, esophageal narrowing, and strictures, it could result in low body mass index (BMI), but there are few data assessing this

    Scientific Communities Striving for a Common Cause: Innovations in Carbon Cycle Science

    Get PDF
    Where does the carbon released by burning fossil fuels go? Currently, ocean and land systems remove about half of the CO₂ emitted by human activities; the remainder stays in the atmosphere. These removal processes are sensitive to feedbacks in the energy, carbon, and water cycles that will change in the future. Observing how much carbon is taken up on land through photosynthesis is complicated because carbon is simultaneously respired by plants, animals, and microbes. Global observations from satellites and air samples suggest that natural ecosystems take up about as much CO₂ as they emit. To match the data, our land models generate imaginary Earths where carbon uptake and respiration are roughly balanced, but the absolute quantities of carbon being exchanged vary widely. Getting the magnitude of the flux is essential to make sure our models are capturing the right pattern for the right reasons. Combining two cutting-edge tools, carbonyl sulfide (OCS) and solar-induced fluorescence (SIF), will help develop an independent answer of how much carbon is being taken up by global ecosystems. Photosynthesis requires CO₂, light, and water. OCS provides a spatially and temporally integrated picture of the “front door” of photosynthesis, proportional to CO₂ uptake and water loss through plant stomata. SIF provides a high-resolution snapshot of the “side door,” scaling with the light captured by leaves. These two independent pieces of information help us understand plant water and carbon exchange. A coordinated effort to generate SIF and OCS data through satellite, airborne, and ground observations will improve our process-based models to predict how these cycles will change in the future
    corecore