To evaluate their usefulness as chemical indicators of cumulative oxidative damage to proteins, we studied the kinetics and extent of formation of ortho-tyrosine (0-Tyr), dityrosine (DT), and dityrosine-like fluorescence (Ex = 3 17 nm, E,,, = 407 nm) in the model proteins RNase and lysozyme exposed to radiolytic and metalcatalyzed (H20z/Cu2+) oxidation (MCO). Although there were protein-dependent differences, o-Tyr, DT, and fluorescence increased coordinately during oxidation of the proteins in both oxidation systems. The contribution of DT to total dityrosine-like fluorescence in oxidized proteins varied from 2-10070, depending on the protein, type of oxidation, and extent of oxidative damage. In proteins exposed to MCO, DT typically accounted for \u3e50% of the fluorescence at DT wavelengths. These studies indicate that o-Tyr and DT should be useful chemical markers of cumulative exposure of proteins to MCO in vitro and in vivo