5,624 research outputs found

    Multiaxis thrust vectoring using axisymmetric nozzles and postexit vanes on an F/A-18 configuration vehicle

    Get PDF
    A ground-based investigation was conducted on an operational system of multiaxis thrust vectoring using postexit vanes around an axisymmetric nozzle. This thrust vectoring system will be tested on the NASA F/A-18 High Alpha Research Vehicle (HARV) aircraft. The system provides thrust vectoring capability in both pitch and yaw. Ground based data were gathered from two separate tests at NASA Langley Research Center. The first was a static test in the 16-foot Transonic Tunnel Cold-Jet Facility with a 14.25 percent scale model of the axisymmetric nozzle and the postexit vanes. The second test was conducted in the 30 by 60 foot wind tunnel with a 16 percent F/A-18 complete configuration model. Data from the two sets are being used to develop models of jet plume deflection and thrust loss as a function of vane deflection. In addition, an aerodynamic interaction model based on plume deflection angles will be developed. Results from the scale model nozzle test showed that increased vane deflection caused exhaust plume turning. Aerodynamic interaction effects consisted primarily of favorable interaction of moments and unfavorable interaction of forces caused by the vectored jet plume

    Bezlotoxumab for prevention of recurrent Clostridium difficile infection in patients at increased risk for recurrence

    Get PDF
    Background: Bezlotoxumab is a human monoclonal antibody against Clostridium difficile toxin B indicated to prevent C. difficile infection (CDI) recurrence (rCDI) in adults at high risk for rCDI. This post hoc analysis of pooled monocolonal antibodies for C.difficile therapy (MODIFY) I/II data assessed bezlotoxumab efficacy in participants with characteristics associated with increased risk for rCDI. Methods: The analysis population was the modified intent-to-treat population who received bezlotoxumab or placebo (n = 1554) by risk factors for rCDI that were prespecified in the statistical analysis plan: age ≥65 years, history of CDI, compromised immunity, severe CDI, and ribotype 027/078/244. The proportion of participants with rCDI in 12 weeks, fecal microbiota transplant procedures, 30-day all cause and CDI-associated hospital readmissions, and mortality at 30 and 90 days after randomization were presented. Results: The majority of enrolled participants (75.6%) had ≥1 risk factor; these participants were older and a higher proportion had comorbidities compared with participants with no risk factors. The proportion of placebo participants who experienced rCDI exceeded 30% for each risk factor compared with 20.9% among those without a risk factor, and the rCDI rate increased with the number of risk factors (1 risk factor: 31.3%; ≥3 risk factors: 46.1%). Bezlotoxumab reduced rCDI, fecal microbiota transplants, and CDI-associated 30-day readmissions in participants with risk factors for rCDI. Conclusions: The risk factors prespecified in the MODIFY statistical analysis plan are appropriate to identify patients at high risk for rCDI. While participants with ≥3 risk factors had the greatest reduction of rCDI with bezlotoxumab, those with 1 or 2 risk factors may also benefit. Clinical Trials Registration: NCT01241552 (MODIFY I) and NCT01513239 (MODIFY II)

    Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

    Get PDF
    An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin well head and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically-instrumented BAe-146 research aircraft, were used to quantify the flow rate. Where appropriate, two different methods were used to calculate the flow rate: 1. Gaussian plume fitting in the vertical and 2. Direct integration of the plume. When both methods were used, they compared within 6 % of each other and within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3 ± 0.2 kg CH4 s−1, decreasing to less than half that by the second flight on 17 April 2012. δ13CCH4 in the gas was found to be −43 ‰, implying that the gas source was unlikely to be from the main high-pressure high-temperature Elgin gas field at 5.5 km depth, but more probably from the overlying Hod Formation at 4.2 km depth. This was deemed to be smaller and more manageable than the high-pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48 hours of sampling, with δ13CCH4 characterisation soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision-makers and assist rapid response-planning by government

    Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

    Get PDF
    An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin well head and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically-instrumented BAe-146 research aircraft, were used to quantify the flow rate. Where appropriate, two different methods were used to calculate the flow rate: 1. Gaussian plume fitting in the vertical and 2. Direct integration of the plume. When both methods were used, they compared within 6 % of each other and within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3 ± 0.2 kg CH4 s−1, decreasing to less than half that by the second flight on 17 April 2012. δ13CCH4 in the gas was found to be −43 ‰, implying that the gas source was unlikely to be from the main high-pressure high-temperature Elgin gas field at 5.5 km depth, but more probably from the overlying Hod Formation at 4.2 km depth. This was deemed to be smaller and more manageable than the high-pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48 hours of sampling, with δ13CCH4 characterisation soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision-makers and assist rapid response-planning by government

    Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    Get PDF
    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness and barotrauma as well as various musculoskeletal disorders from working in the spacesuit. The medical, operational and research communities over the years have requested access to EVA training data to better understand the risks. As a result of these requests, epidemiologists within the Lifetime Surveillance of Astronaut Health (LSAH) team have compiled records from numerous EVA training venues to quantify the exposure to EVA training. The EVA Suit Exposure Tracker (EVA SET) dataset is a compilation of ground-based training activities using the extravehicular mobility unit (EMU) in neutrally buoyant pools to enhance EVA performance on orbit. These data can be used by the current ISS program and future exploration missions by informing physicians, researchers, and operational personnel on the risks of EVA training in order that future suit and mission designs incorporate greater safety. The purpose of this technical report is to document briefly the various facilities where NASA astronauts have performed EVA training while describing in detail the EVA training records used to generate the EVA SET dataset

    Cerebrovascular Accident Incidence in the NASA Astronaut Population

    Get PDF
    The development of atherosclerosis is strongly associated with an increased risk for cerebrovascular accidents (CVA), including stroke and transient ischemic attacks (TIA). Certain unique occupational exposures that individuals in the NASA astronaut corps face, specifically high-performance aircraft training, SCUBA training, and spaceflight, are hypothesized to cause changes to the cardiovascular system. These changes, which include (but are not limited to) oxidative damage as a result of radiation exposure and circadian rhythm disturbance, increased arterial stiffness, and increased carotid-intima-media thickness (CIMT), may contribute to the development of atherosclerosis and subsequent CVA. The purpose of this study was to review cases of CVA in the NASA astronaut corps and describe the comorbidities and occupational exposures associated with CVA

    In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice

    Get PDF
    Although tau is a cytoplasmic protein, it is also found in brain extracellular fluids, e.g., CSF. Recent findings suggest that aggregated tau can be transferred between cells and extracellular tau aggregates might mediate spread of tau pathology. Despite these data, details of whether tau is normally released into the brain interstitial fluid (ISF), its concentration in ISF in relation to CSF, and whether ISF tau is influenced by its aggregation are unknown. To address these issues, we developed a microdialysis technique to analyze monomeric ISF tau levels within the hippocampus of awake, freely moving mice. We detected tau in ISF of wild-type mice, suggesting that tau is released in the absence of neurodegeneration. ISF tau was significantly higher than CSF tau and their concentrations were not significantly correlated. Using P301S human tau transgenic mice (P301S tg mice), we found that ISF tau is fivefold higher than endogenous murine tau, consistent with its elevated levels of expression. However, following the onset of tau aggregation, monomeric ISF tau decreased markedly. Biochemical analysis demonstrated that soluble tau in brain homogenates decreased along with the deposition of insoluble tau. Tau fibrils injected into the hippocampus decreased ISF tau, suggesting that extracellular tau is in equilibrium with extracellular or intracellular tau aggregates. This technique should facilitate further studies of tau secretion, spread of tau pathology, the effects of different disease states on ISF tau, and the efficacy of experimental treatments

    A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Get PDF
    BACKGROUND: Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. RESULTS: We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus) from cell culture and lymphocystis disease virus (iridovirus) and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1). The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. CONCLUSION: The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified viruses according to relatedness to sequences of reference viruses and the submission of the sequence data to GenBank will build the database to make the BLAST analysis a valuable resource readily accessible by most diagnostic laboratories. We demonstrated the utility of this assay on viruses that infect fish and birds. These hosts are phylogenetically distant from mammals yet, sequence data suggests that the assay would work equally as well on mammalian counterparts of these groups of viruses. Furthermore, we demonstrated that obtaining genetic information on routine diagnostic samples has great potential for revealing new virus strains and suggesting the presence of new species
    • …
    corecore