53 research outputs found

    Efficacy of Two Licensed Avian Influenza H5 Vaccines Against Challenge with a 2015 U.S. H5N2 clade 2.3.4.4 Highly Pathogenic Avian Influenza Virus in Domestic Ducks

    Get PDF
    Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses from the H5 goose/Guangdong lineage caused a major outbreak in poultry in the United States in 2015. Although the outbreak was controlled, vaccines were considered as an alternative control method, and new vaccines were approved and purchased by the U.S. Department of Agriculture National Veterinary Stockpile for emergency use. In this study, we evaluated the efficacy of two of these vaccines in protecting Pekin ducks (Anas platyrhynchos var. domestica) against challenge with a H5N2 HPAI poultry isolate. A recombinant alphavirus-based vaccine and an inactivated adjuvanted reverse genetics vaccine, both expressing the hemagglutinin gene of a U.S. H5 clade 2.3.4.4 isolate (A/Gyrfalcon/Washington/41088-6/2014 H5N8), were used to immunize the ducks. The vaccines were given either as single vaccination at 2 days of age or in a prime-boost strategy at 2 and 15 days of age. At 32 days of age, all ducks were challenged with A/turkey/Minnesota/12582/15 H5N2 HPAI virus clade 2.3.4.4. All ducks from the nonvaccinated challenge control group became infected and shed virus; one duck in this group presented mild ataxia, and a second duck died. No mortality or clinical signs were observed in vaccinated and challenged ducks, with the exception of one duck presenting with mild ataxia. Both vaccines, regardless of the vaccination strategy used, were immunogenic in ducks and reduced or prevented virus shedding after challenge. In conclusion, good protection against H5Nx infection was achieved in ducks vaccinated with the vaccines examined, which were homologous to the challenge virus, with prime-boost strategies conferring the best protection against infection.info:eu-repo/semantics/publishedVersio

    Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection

    Get PDF
    In the 2014–2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian infuenza (HPAI) outbreak in the U.S., backyard focks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were afected. The pathogenesis of the frst H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investi‑ gated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80–100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic fndings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic infam‑ matory infltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking diference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tis‑ sues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.info:eu-repo/semantics/publishedVersio

    Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection

    Get PDF
    International audienceAbstractIn the 2014–2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80–100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds

    Metagenomic analysis of the turkey gut RNA virus community

    Get PDF
    Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses

    Comparison of Mortgage Loans in the Czech Republic

    Get PDF
    Import 05/08/2014Cílem bakalářské práce je srovnání hypotečních úvěrů nabízených bankami v České republice a následný výběr nejvhodnějšího hypotečního produktu pro financování výstavby rodinného domu. Optimální varianta byla vybrána pomocí metody vícekriteriální analýzy.The aim of the thesis is the comparison of mortgage loans offered by banks in the Czech Republic and the subsequent selection of the most suitable mortgage product for financing the construction of a house. Optimal been selected using the multi-criteria analysis.154 - Katedra financívýborn

    The pathogenesis of low pathogenicity H7 avian influenza viruses in chickens, ducks and turkeys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses from different avian species for their ability to cause disease in domestic poultry under the same conditions. In this study twelve H7 LPAI virus isolates from North America were each evaluated for their comparative pathogenesis in chickens, ducks, and turkeys.</p> <p>Results</p> <p>All 12 isolates were able to infect all three species at a dose of 10<sup>6 </sup>50% egg infectious doses based on seroconversion, although not all animals seroconverted with each isolate-species combination. The severity of disease varied among isolate and species combinations, but there was a consistent trend for clinical disease to be most severe in turkeys where all 12 isolates induced disease, and mortality was observed in turkeys exposed to 9 of the 12 viruses. Turkeys also shed virus by the oral and cloacal routes at significantly higher titers than either ducks or chickens at numerous time points. Only 3 isolates induced observable clinical disease in ducks and only 6 isolates induced disease in chickens, which was generally very mild and did not result in mortality. Full genome sequence was completed for all 12 isolates and some isolates did have features consistent with adaptation to poultry (e.g. NA stalk deletions), however none of these features correlated with disease severity.</p> <p>Conclusions</p> <p>The data suggests that turkeys may be more susceptible to clinical disease from the H7 LPAI viruses included in this study than either chickens or ducks. However the severity of disease and degree of virus shed was not clearly correlated with any isolate or group of isolates, but relied on specific species and isolate combinations.</p

    H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread

    Influenza Virus Respiratory Infection and Transmission Following Ocular Inoculation in Ferrets

    Get PDF
    While influenza viruses are a common respiratory pathogen, sporadic reports of conjunctivitis following human infection demonstrates the ability of this virus to cause disease outside of the respiratory tract. The ocular surface represents both a potential site of virus replication and a portal of entry for establishment of a respiratory infection. However, the properties which govern ocular tropism of influenza viruses, the mechanisms of virus spread from ocular to respiratory tissue, and the potential differences in respiratory disease initiated from different exposure routes are poorly understood. Here, we established a ferret model of ocular inoculation to explore the development of virus pathogenicity and transmissibility following influenza virus exposure by the ocular route. We found that multiple subtypes of human and avian influenza viruses mounted a productive virus infection in the upper respiratory tract of ferrets following ocular inoculation, and were additionally detected in ocular tissue during the acute phase of infection. H5N1 viruses maintained their ability for systemic spread and lethal infection following inoculation by the ocular route. Replication-independent deposition of virus inoculum from ocular to respiratory tissue was limited to the nares and upper trachea, unlike traditional intranasal inoculation which results in virus deposition in both upper and lower respiratory tract tissues. Despite high titers of replicating transmissible seasonal viruses in the upper respiratory tract of ferrets inoculated by the ocular route, virus transmissibility to naïve contacts by respiratory droplets was reduced following ocular inoculation. These data improve our understanding of the mechanisms of virus spread following ocular exposure and highlight differences in the establishment of respiratory disease and virus transmissibility following use of different inoculation volumes and routes
    corecore