89 research outputs found

    The Stem Cell Phenotype of Aggressive Breast Cancer Cells

    Get PDF
    Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence

    The Stem Cell Phenotype of Aggressive Breast Cancer Cells

    Get PDF
    Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence

    A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells

    Get PDF
    Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model

    PROPEL: implementation of an evidence based pelvic floor muscle training intervention for women with pelvic organ prolapse: a realist evaluation and outcomes study protocol

    Get PDF
    Abstract Background Pelvic Organ Prolapse (POP) is estimated to affect 41%–50% of women aged over 40. Findings from the multi-centre randomised controlled “Pelvic Organ Prolapse PhysiotherapY” (POPPY) trial showed that individualised pelvic floor muscle training (PFMT) was effective in reducing symptoms of prolapse, improved quality of life and showed clear potential to be cost-effective. However, provision of PFMT for prolapse continues to vary across the UK, with limited numbers of women’s health physiotherapists specialising in its delivery. Implementation of this robust evidence from the POPPY trial will require attention to different models of delivery (e.g. staff skill mix) to fit with differing care environments. Methods A Realist Evaluation (RE) of implementation and outcomes of PFMT delivery in contrasting NHS settings will be conducted using multiple case study sites. Involving substantial local stakeholder engagement will permit a detailed exploration of how local sites make decisions on how to deliver PFMT and how these lead to service change. The RE will track how implementation is working; identify what influences outcomes; and, guided by the RE-AIM framework, will collect robust outcomes data. This will require mixed methods data collection and analysis. Qualitative data will be collected at four time-points across each site to understand local contexts and decisions regarding options for intervention delivery and to monitor implementation, uptake, adherence and outcomes. Patient outcome data will be collected at baseline, six months and one year follow-up for 120 women. Primary outcome will be the Pelvic Organ Prolapse Symptom Score (POP-SS). An economic evaluation will assess the costs and benefits associated with different delivery models taking account of further health care resource use by the women. Cost data will be combined with the primary outcome in a cost effectiveness analysis, and the EQ-5D-5L data in a cost utility analysis for each of the different models of delivery. Discussion Study of the implementation of varying models of service delivery of PFMT across contrasting sites combined with outcomes data and a cost effectiveness analysis will provide insight into the implementation and value of different models of PFMT service delivery and the cost benefits to the NHS in the longer term

    Global Demethylation of Rat Chondrosarcoma Cells after Treatment with 5-Aza-2′-Deoxycytidine Results in Increased Tumorigenicity

    Get PDF
    Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells

    Arousal of Cancer-Associated Stroma: Overexpression of Palladin Activates Fibroblasts to Promote Tumor Invasion

    Get PDF
    Background: Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Principal Findings: Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (a-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of a-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development o

    Seed size variation: magnitude, distribution, and ecological correlates

    Full text link
    We examined seed-mass variation in 39 species (46 populations) of plants in eastern-central Illinois, USA. The coefficient of variation of seed mass commonly exceeded 20%. Significant variation in mean seed mass occurred among conspecific plants in most species sampled (by hierarchical ANOVA), averaging 38% of total variance. For most species, within-plant variation was the larger component of total variance, averaging 62% of total variance. Variation in seed mass among fruits within crops was significant in most species tested.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42741/1/10682_2005_Article_BF02067274.pd
    • …
    corecore