14 research outputs found

    Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms

    Get PDF
    Gene regulatory networks underpinning skeletal muscle determination and differentiation have been extensively investigated, providing molecular insights into how cell lineages are established during development. These studies have exclusively focused on the transcriptome downstream of RNA polymerase II (Pol II). RNA polymerase III (Pol III) drives the production of tRNAs and other small RNAs essential for the flow of genetic information from gene to protein and we have found that a specific isoform of a subunit unique to Pol III is expressed early in the myogenic lineage. This points to the possibility that additional regulatory networks exist to control the production of Pol III transcripts during skeletal muscle differentiation. We describe the differential expression of Polr3g and its alternate isoform Polr3gL during embryonic development and using a custom tRNA microarray, we demonstrate their distinct activity on the synthesis of tRNA isoacceptors. We show that Pol III dependent transcripts are dramatically down-regulated during the differentiation of skeletal muscle, as are mRNAs coding for Pol III associated proteins Brf1 and Brf2, while Polr3gL is up-regulated alongside contractile protein genes. Forcing Polr3g expression in this context results in a partial reversal of myogenic differentiatio

    Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms

    Get PDF
    Gene regulatory networks underpinning skeletal muscle determination and differentiation have been extensively investigated, providing molecular insights into how cell lineages are established during development. These studies have exclusively focused on the transcriptome downstream of RNA polymerase II (Pol II). RNA polymerase III (Pol III) drives the production of tRNAs and other small RNAs essential for the flow of genetic information from gene to protein and we have found that a specific isoform of a subunit unique to Pol III is expressed early in the myogenic lineage. This points to the possibility that additional regulatory networks exist to control the production of Pol III transcripts during skeletal muscle differentiation. We describe the differential expression of Polr3g and its alternate isoform Polr3gL during embryonic development and using a custom tRNA microarray, we demonstrate their distinct activity on the synthesis of tRNA isoacceptors. We show that Pol III dependent transcripts are dramatically down-regulated during the differentiation of skeletal muscle, as are mRNAs coding for Pol III associated proteins Brf1 and Brf2, while Polr3gL is up-regulated alongside contractile protein genes. Forcing Polr3g expression in this context results in a partial reversal of myogenic differentiation

    An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos

    Get PDF
    Myogenic regulatory factors (MRFs) are known to have essential roles in both the establishment and differentiation of the skeletal muscle cell lineage. MyoD is expressed early in the Xenopus mesoderm where it is present and active several hours before the activation of muscle differentiation genes. Previous studies in cultured cells and in Xenopus laevis have identified sets of genes that require MyoD prior to differentiation of skeletal muscle. Here we report results from experiments using CRISPR/Cas9 to target the MyoD gene in the diploid frog Xenopus tropicalis, that are analysed by RNA-seq at gastrula stages. We further investigate our data using cluster analysis to compare developmental expression profiles with that of MyoD and -cardiac actin, reference genes for skeletal muscle determination and differentiation. Our findings provide an assessment of using founder (F0) Xenopus embryos from CRISPR/Cas9 protocols for transcriptomic analyses and we conclude that although targeted F0 embryos are genetically mosaic for MyoD, there is significant disruption in the expression of a specific set of genes. We discuss candidate target genes in context of their role in the sub-programs of MyoD regulated transcription

    Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis

    Get PDF
    AbstractGenetic studies have established that heparan sulphate proteoglycans (HSPGs) are required for signalling by key developmental regulators, including Hedgehog, Wnt/Wg, FGF, and BMP/Dpp. Post-synthetic remodelling of heparan sulphate (HS) by Sulf1 has been shown to modulate these same signalling pathways. Sulf1 codes for an N-acetylglucosamine 6-O-endosulfatase, an enzyme that specifically removes the 6-O sulphate group from glucosamine in highly sulfated regions of HS chains. One striking aspect of Sulf1 expression in all vertebrates is its co-localisation with that of Sonic hedgehog in the floor plate of the neural tube. We show here that Sulf1 is required for normal specification of neural progenitors in the ventral neural tube, a process known to require a gradient of Shh activity. We use single-cell injection of mRNA coding for GFP-tagged Shh in early Xenopus embryos and find that Sulf1 restricts ligand diffusion. Moreover, we find that the endogenous distribution of Shh protein in Sulf1 knockdown embryos is altered, where a less steep ventral to dorsal gradient forms in the absence of Sulf1, resulting in more a diffuse distribution of Shh. These data point to an important role for Sulf1 in the ventral neural tube, and suggests a mechanism whereby Sulf1 activity shapes the Shh morphogen gradient by promoting ventral accumulation of high levels of Shh protein

    Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica

    Get PDF
    Although it is widely accepted that the cellular and molecular mechanisms of vertebratecardiac development are evolutionarily conserved, this is on the basis of data from only a fewmodel organisms suited to laboratory studies. Here, we investigate gene expression during cardiacdevelopment in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. Wefirst characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying andcloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2cfor analysis by in situ hybridisation. Expression of these three key cardiac developmentalregulators also reveals other aspects of O. alcalica development, as these genes are expressed indeveloping blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O.alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation ofthe vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interestingdifferences in the development of the circulatory system distinct from that of the well-studiedzebrafish. Understanding the development of O. alcalica embryos is an important step towardsproviding a model for future research into the adaptation to extreme conditions; this is particularlyrelevant given that anthropogenic-driven climate change will likely result in more freshwaterorganisms being exposed to less favourable conditions

    Characterisation of the Fibroblast Growth Factor Dependent Transcriptome in Early Development

    Get PDF
    BACKGROUND: FGF signaling has multiple roles in regulating processes in animal development, including the specification and patterning of the mesoderm. In addition, FGF signaling supports self renewal of human embryonic stem cells and is required for differentiation of murine embryonic stem cells into a number of lineages. METHODOLOGY/PRINCIPAL FINDINGS: Given the importance of FGF signaling in regulating development and stem cell behaviour, we aimed to identify the transcriptional targets of FGF signalling during early development in the vertebrate model Xenopus laevis. We analysed the effects on gene expression in embryos in which FGF signaling was inhibited by dominant negative FGF receptors. 67 genes positively regulated by FGF signaling and 16 genes negatively regulated by FGF signaling were identified. FGF target genes are expressed in distinct waves during the late blastula to early gastrula phase. Many of these genes are expressed in the early mesoderm and dorsal ectoderm. A widespread requirement for FGF in regulating genes expressed in the Spemann organizer is revealed. The FGF targets MKP1 and DUSP5 are shown to be negative regulators of FGF signaling in early Xenopus tissues. FoxD3 and Lin28, which are involved in regulating pluripotency in ES cells are shown to be down regulated when FGF signaling is blocked. CONCLUSIONS: We have undertaken a detailed analysis of FGF target genes which has generated a robust, well validated data set. We have found a widespread role for FGF signaling in regulating the expression of genes mediating the function of the Spemann organizer. In addition, we have found that the FGF targets MKP1 and DUSP5 are likely to contribute to the complex feedback loops involved in modulating responses to FGF signaling. We also find a link between FGF signaling and the expression of known regulators of pluripotency

    A consensus Oct1 binding site is required for the activity of the Xenopus Cdx4 promoter

    Get PDF
    Cdx homeodomain transcription factors have multiple roles in early vertebrate development. Furthermore, mis-regulation of Cdx expression has been demonstrated in metaplasias and cancers of the gut epithelium. Given the importance of Cdx genes in development and disease, the mechanisms underlying their expression are of considerable interest. We report an analysis of the upstream regulatory regions from the amphibian Xenopus laevis Cdx4 gene. We show that a GFP reporter containing 2.8 kb upstream of the transcription start site is expressed in the posterior of transgenic embryos. Deletion analysis of the upstream sequence reveals that a 247-bp proximal promoter fragment will drive posterior expression in transgenic embryos. We show that 63 bp of upstream sequence, that includes a consensus site for POU-domain octamer-binding proteins, retains significant promoter activity. Co-expression of the octamer-binding protein Oct1 induces expression from a Cdx4 reporter and mutation of the octamer site abolishes activity of the same reporter. We show that the octamer site is highly conserved in the promoters of the human, mouse, chicken, and zebrafish Cdx4 genes and within the promoters of amphibian Cdx1 and Cdx2. These data suggest a conserved function for octamer-binding proteins in the regulation of Cdx family members

    Computational approaches for understanding the diagnosis and treatment of Parkinson's disease

    No full text
    This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson’s disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson’s by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way
    corecore