12 research outputs found

    Uranium and Radon in Private Bedrock Well Water in Maine: Geospatial Analysis at Two Scales

    Get PDF
    In greater Augusta of central Maine, 53 out of 1093 (4.8%) private bedrock well water samples from 1534 kmÂČ contained [U] > 30 ÎŒg/L, the U.S. Environmental Protection Agency’s (EPA) Maximum Contaminant Level (MCL) for drinking water; and 226 out of 786 (29%) samples from 1135 kmÂČ showed [Rn] > 4,000 pCi/L (148 Bq/L), the U.S. EPA’s Alternative MCL. Groundwater pH, calcite dissolution and redox condition are factors controlling the distribution of groundwater U but not Rn due to their divergent chemical and hydrological properties. Groundwater U is associated with incompatible elements (S, As, Mo, F, and Cs) in water samples within granitic intrusions. Elevated [U] and [Rn] are located within 5–10 km distance of granitic intrusions but do not show correlations with metamorphism at intermediate scales (10⁰−10Âč km). This spatial association is confirmed by a high-density sampling (n = 331, 5–40 samples per kmÂČ) at local scales (≀10–1 km) and the statewide sampling (n = 5857, 1 sample per 16 kmÂČ) at regional scales (10ÂČ–103 km). Wells located within 5 km of granitic intrusions are at risk of containing high levels of [U] and [Rn]. Approximately 48 800–63 900 and 324 000 people in Maine are estimated at risk of exposure to U (> 30 ÎŒg/L) and Rn (> 4000 pCi/L) in well water, respectively

    Searching for dark matter with plasma haloscopes

    Get PDF
    We summarize the recent progress of the Axion Longitudinal Plasma Haloscope (ALPHA) Consortium, a new experimental collaboration to build a plasma haloscope to search for axions and dark photons. The plasma haloscope is a novel method for the detection of the resonant conversion of light dark matter to photons. ALPHA will be sensitive to QCD axions over almost a decade of parameter space, potentially discovering dark matter and resolving the strong CP problem. Unlike traditional cavity haloscopes, which are generally limited in volume by the Compton wavelength of the dark matter, plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals. We develop the theoretical foundations of plasma haloscopes and discuss recent experimental progress. Finally, we outline a baseline design for ALPHA and show that a full-scale experiment could discover QCD axions over almost a decade of parameter space

    Potential for critical mineral deposits in Maine, USA

    No full text
    An analysis of the potential for deposits of critical minerals and elements in Maine presented here includes data and discussions for antimony, beryllium, cesium, chromium, cobalt, graphite, lithium, manganese, niobium, platinum group elements, rhenium, rare earth elements, tin, tantalum, tellurium, titanium, uranium, vanadium, tungsten, and zirconium. Deposits are divided into two groups based on geological settings and common ore-deposit terminology. One group consists of known deposits (sediment-hosted manganese, volcanogenic massive sulphide, porphyry copper-molybdenum, mafic- and ultramafic-hosted nickel-copper [-cobalt-platinum group elements], pegmatitic lithium-cesium-tantalum) that are in most cases relatively large, well-documented, and have been explored extensively in the past. The second, and much larger group of different minerals and elements, comprises small deposits, prospects, and occurrences that are minimally explored or unexplored. The qualitative assessment used in this study relies on three key criteria: (1) the presence of known deposits, prospects, or mineral occurrences; (2) favourable geologic settings for having certain deposit types based on current ore deposit models; and (3) geochemical anomalies in rocks or stream sediments, including panned concentrates. Among 20 different deposit types considered herein, a high resource potential is assigned only to three: (1) sediment-hosted manganese, (2) mafic- and ultramafic-hosted nickel-copper(-cobalt-platinum group elements), and (3) pegmatitic lithium-cesium-tantalum. Moderate potential is assigned to 11 other deposit types, including: (1) porphyry copper-molybdenum (-rhenium, selenium, tellurium, bismuth, platinum group elements); (2) chromium in ophiolites; (3) platinum group elements in ophiolitic ultramafic rocks; (4) granite-hosted uranium-thorium; (5) tin in granitic plutons and veins; (6) niobium, tantalum, and rare earth elements in alkaline intrusions; (7) tungsten and bismuth in polymetallic veins; (8) vanadium in black shales; (9) antimony in orogenic veins and replacements; (10) tellurium in epithermal deposits; and (11) uranium in peat.L’analyse du potentiel de gĂźtes de minĂ©raux et d’élĂ©ments critiques au Maine exposĂ©e aux prĂ©sentes comporte des donnĂ©es et des examens concernant l’antimoine, le bĂ©ryllium, le cĂ©sium, le chrome, le cobalt, le graphite, le lithium, le manganĂšse, le niobium, les Ă©lĂ©ments du groupe du platine, le rhĂ©nium, les Ă©lĂ©ments des terres rares, l’étain, le tantale, le tellure, le titane, l’uranium, le vanadium, le tungstĂšne et le zirconium. Les gĂźtes sont rĂ©partis en deux groupes selon les cadres gĂ©ologiques et la terminologie des minĂ©raux mĂ©tallifĂšres communs. Un groupe est constituĂ© de gĂźtes connus [manganĂšse dans des roches sĂ©dimentaires, sulfures massifs volcanogĂšnes, gĂźtes porphyriques de cuivre-molybdĂšne nickel-cuivre (-cobalt-Ă©lĂ©ments du groupe du platine) dans des roches mafiques et ultramafiques ainsi que gisements pegmatitiques de lithium-cĂ©sium-tantale] qui sont dans la majoritĂ© des cas relativement vastes, qui sont bien documentĂ©s et qui ont fait l’objet d’une exploration poussĂ©e par le passĂ©. Le second groupe, beaucoup plus nombreux, de minĂ©raux et d’élĂ©ments diffĂ©rents, est composĂ© de petits gĂźtes, de zones prometteuses et de venues ayant Ă©tĂ© peu explorĂ©es ou inexplorĂ©es. L’évaluation qualitative utilisĂ©e dans le cadre de l’étude repose sur trois critĂšres clĂ©s : 1) la prĂ©sence de gĂźtes, de zones prometteuses ou de venues minĂ©rales connus; 2) les cadres gĂ©ologiques favorables en raison de la prĂ©sence de certains types de gĂźtes basĂ©s sur les modĂšles de dĂ©pĂŽts de minerai courants; et 3) les anomalies gĂ©ochimiques dans les roches ou les sĂ©diments fluviatiles, notamment les concentrĂ©s lavĂ©s Ă  la batĂ©e. Parmi les 20 diffĂ©rents types de gĂźtes considĂ©rĂ©s aux prĂ©sentes, seuls trois se voient confĂ©rer un potentiel de ressources Ă©levé : 1) les gĂźtes de manganĂšse dans des roches sĂ©dimentaires, 2) le nickel-cuivre (-cobalt-Ă©lĂ©ments du groupe du platine) dans des roches mafiques et ultramafiques, et 3) les gĂźtes pegmatitiques de lithium-cĂ©sium-tantale. Un potentiel moyen est attribuĂ© Ă  11 autres types de gĂźtes, notamment : les gĂźtes porphyriques de cuivre-molybdĂšne (-rhĂ©nium, sĂ©lĂ©nium, tellure, bismuth, Ă©lĂ©ments du groupe du platine); 2) le chrome dans des ophiolites; 3) les Ă©lĂ©ments du groupe du platine dans des roches ultramafiques ophiolitiques; 4) l’uranium-thorium dans du granite; 5) l’étain dans des plutons et filons granitiques; 6) le niobium, le tantale et les Ă©lĂ©ments des terres rares dans des intrusions alcalines; 7) le tungstĂšne et le bismuth dans des filons polymĂ©talliques; 8) le vanadium dans des schistes noirs; 9) des filons orogĂ©niques et des substitutions; 10) le tellure dans des gĂźtes Ă©pithermaux et 11) l’uranium dans la tourbe

    Potentiel de gĂźtes de minĂ©raux critiques au Maine, États-Unis

    No full text
    An analysis of the potential for deposits of critical minerals and elements in Maine presented here includes data and discussions for antimony, beryllium, cesium, chromium, cobalt, graphite, lithium, manganese, niobium, platinum group elements, rhenium, rare earth elements, tin, tantalum, tellurium, titanium, uranium, vanadium, tungsten, and zirconium. Deposits are divided into two groups based on geological settings and common ore-deposit terminology. One group consists of known deposits (sediment-hosted manganese, volcanogenic massive sulphide, porphyry copper-molybdenum, mafic- and ultramafic-hosted nickel-copper [-cobalt-platinum group elements], pegmatitic lithium-cesium-tantalum) that are in most cases relatively large, well-documented, and have been explored extensively in the past. The second, and much larger group of different minerals and elements, comprises small deposits, prospects, and occurrences that are minimally explored or unexplored. The qualitative assessment used in this study relies on three key criteria: (1) the presence of known deposits, prospects, or mineral occurrences; (2) favourable geologic settings for having certain deposit types based on current ore deposit models; and (3) geochemical anomalies in rocks or stream sediments, including panned concentrates. Among 20 different deposit types considered herein, a high resource potential is assigned only to three: (1) sediment-hosted manganese, (2) mafic- and ultramafic-hosted nickel-copper(-cobalt-platinum group elements), and (3) pegmatitic lithium-cesium-tantalum. Moderate potential is assigned to 11 other deposit types, including: (1) porphyry copper-molybdenum (-rhenium, selenium, tellurium, bismuth, platinum group elements); (2) chromium in ophiolites; (3) platinum group elements in ophiolitic ultramafic rocks; (4) granite-hosted uranium-thorium; (5) tin in granitic plutons and veins; (6) niobium, tantalum, and rare earth elements in alkaline intrusions; (7) tungsten and bismuth in polymetallic veins; (8) vanadium in black shales; (9) antimony in orogenic veins and replacements; (10) tellurium in epithermal deposits; and (11) uranium in peat.L’analyse du potentiel de gĂźtes de minĂ©raux et d’élĂ©ments critiques au Maine exposĂ©e aux prĂ©sentes comporte des donnĂ©es et des examens concernant l’antimoine, le bĂ©ryllium, le cĂ©sium, le chrome, le cobalt, le graphite, le lithium, le manganĂšse, le niobium, les Ă©lĂ©ments du groupe du platine, le rhĂ©nium, les Ă©lĂ©ments des terres rares, l’étain, le tantale, le tellure, le titane, l’uranium, le vanadium, le tungstĂšne et le zirconium. Les gĂźtes sont rĂ©partis en deux groupes selon les cadres gĂ©ologiques et la terminologie des minĂ©raux mĂ©tallifĂšres communs. Un groupe est constituĂ© de gĂźtes connus [manganĂšse dans des roches sĂ©dimentaires, sulfures massifs volcanogĂšnes, gĂźtes porphyriques de cuivre-molybdĂšne nickel-cuivre (-cobalt-Ă©lĂ©ments du groupe du platine) dans des roches mafiques et ultramafiques ainsi que gisements pegmatitiques de lithium-cĂ©sium-tantale] qui sont dans la majoritĂ© des cas relativement vastes, qui sont bien documentĂ©s et qui ont fait l’objet d’une exploration poussĂ©e par le passĂ©. Le second groupe, beaucoup plus nombreux, de minĂ©raux et d’élĂ©ments diffĂ©rents, est composĂ© de petits gĂźtes, de zones prometteuses et de venues ayant Ă©tĂ© peu explorĂ©es ou inexplorĂ©es. L’évaluation qualitative utilisĂ©e dans le cadre de l’étude repose sur trois critĂšres clĂ©s : 1) la prĂ©sence de gĂźtes, de zones prometteuses ou de venues minĂ©rales connus; 2) les cadres gĂ©ologiques favorables en raison de la prĂ©sence de certains types de gĂźtes basĂ©s sur les modĂšles de dĂ©pĂŽts de minerai courants; et 3) les anomalies gĂ©ochimiques dans les roches ou les sĂ©diments fluviatiles, notamment les concentrĂ©s lavĂ©s Ă  la batĂ©e. Parmi les 20 diffĂ©rents types de gĂźtes considĂ©rĂ©s aux prĂ©sentes, seuls trois se voient confĂ©rer un potentiel de ressources Ă©levé : 1) les gĂźtes de manganĂšse dans des roches sĂ©dimentaires, 2) le nickel-cuivre (-cobalt-Ă©lĂ©ments du groupe du platine) dans des roches mafiques et ultramafiques, et 3) les gĂźtes pegmatitiques de lithium-cĂ©sium-tantale. Un potentiel moyen est attribuĂ© Ă  11 autres types de gĂźtes, notamment : les gĂźtes porphyriques de cuivre-molybdĂšne (-rhĂ©nium, sĂ©lĂ©nium, tellure, bismuth, Ă©lĂ©ments du groupe du platine); 2) le chrome dans des ophiolites; 3) les Ă©lĂ©ments du groupe du platine dans des roches ultramafiques ophiolitiques; 4) l’uranium-thorium dans du granite; 5) l’étain dans des plutons et filons granitiques; 6) le niobium, le tantale et les Ă©lĂ©ments des terres rares dans des intrusions alcalines; 7) le tungstĂšne et le bismuth dans des filons polymĂ©talliques; 8) le vanadium dans des schistes noirs; 9) des filons orogĂ©niques et des substitutions; 10) le tellure dans des gĂźtes Ă©pithermaux et 11) l’uranium dans la tourbe

    Effect of Material Structure on Photoluminescence of ZnO/MgO Core-Shell Nanowires

    No full text
    Zinc oxide (ZnO) nanowires are widely studied for use in ultraviolet optoelectronic devices, such as nanolasers and sensors. Nanowires (NWs) with an MgO shell exhibit enhanced band-edge photoluminescence (PL), a result previously attributed to passivation of ZnO defects. However, we find that processing the ZnO NWs under low oxygen partial pressure leads to an MgO-thickness-dependent PL enhancement owing to the formation of optical cavity modes. Conversely, processing under higher oxygen partial pressure leads to NWs that support neither mode formation nor band-edge PL enhancement. High-resolution electron microscopy and density-functional calculations implicate the ZnO m-plane surface morphology as the key determinant of core-shell structure and cavity-mode optics. A ZnO surface with atomic steps along the m-plane in the c-axis direction stimulates the growth of a smooth MgO shell that supports guided-wave optical modes and enhanced UV PL. On the other hand, a smoother ZnO surface leads to nucleation of a rough cladding layer which supports neither enhanced UV PL nor optical cavity modes. Finite-element analysis shows a clear correlation between allowed Fabry-Perot and whispering gallery modes and enhanced UV-PL. These results point the way to fabricating ZnO/MgO core-shell nanowires for more efficient UV nanolasers, scintillators, and sensors
    corecore