16 research outputs found

    Nanopore analysis of amyloid fibrils formed by lysozyme aggregation.

    Get PDF
    The measurement of single particle size distributions of amyloid fibrils is crucial for determining mechanisms of growth and toxicity. Nanopore sensing is an attractive solution for this problem since it gives information on aggregates' shapes with relatively high throughput for a single particle technology. In this paper we study the translocation of lysozyme fibrils through quartz glass nanopores. We demonstrate that, under appropriate salt and pH conditions, lysozyme fibrils translocate through bare quartz nanopores without causing significant clogging. This enables us to measure statistics on tens of thousands of translocations of lysozyme fibrils with the same nanopore and track their development over a time course of aggregation spanning 24 h. Analysis of our events shows that the statistics are consistent with a simple bulk conductivity model for the passage of rods with a fixed cross sectional area through a conical glass nanopore.N.A.W.B. acknowledges funding from the EPSRC NanoDTC program and an EPSRC doctoral prize award and U.F.K. acknowledges funding from an ERC starting grant, PassMembrane (261101).This is the final version of the article. It first appeared from RSC via http://dx.doi.org/10.1039/C5AN00530

    Hypothetical biomolecular probe based on a genetic switch with tunable symmetry and stability

    Get PDF
    Background: Genetic switches are ubiquitous in nature, frequently associated with the control of cellular functions and developmental programs. In the realm of synthetic biology, it is of great interest to engineer genetic circuits that can change their mode of operation from monostable to bistable, or even to multistable, based on the experimental fine-tuning of readily accessible parameters. In order to successfully design robust, bistable synthetic circuits to be used as biomolecular probes, or understand modes of operation of such naturally occurring circuits, we must identify parameters that are key in determining their characteristics. Results: Here, we analyze the bistability properties of a general, asymmetric genetic toggle switch based on a chemical-reaction kinetic description. By making appropriate approximations, we are able to reduce the system to two coupled differential equations. Their deterministic stability analysis and stochastic numerical simulations are in excellent agreement. Drawing upon this general framework, we develop a model of an experimentally realized asymmetric bistable genetic switch based on the LacI and TetR repressors. By varying the concentrations of two synthetic inducers, doxycycline and isopropyl ??-D-1-thiogalactopyranoside, we predict that it will be possible to repeatedly fine-tune the mode of operation of this genetic switch from monostable to bistable, as well as the switching rates over many orders of magnitude, in an experimental setting. Furthermore, we find that the shape and size of the bistability region is closely connected with plasmid copy number. Conclusions: Based on our numerical calculations of the LacI-TetR asymmetric bistable switch phase diagram, we propose a generic work-flow for developing and applying biomolecular probes: Their initial state of operation should be specified by controlling inducer concentrations, and dilution due to cellular division would turn the probes into memory devices in which information could be preserved over multiple generations. Additionally, insights from our analysis of the LacI-TetR system suggest that this particular system is readily available to be employed in this kind of probe.clos

    MODELLING OF HEAT-MASS TRANSFER AND OPTIMIZATION OF GASODYNAMIC CONDITIONS IN REACTORS OF CHEMICAL DEPOSITION FROM GAS PHASE

    No full text
    The gasodynamic model for the reactor of the chemical deposition from gas phase has been considered, the algorithm for solving non-stationaryl problem for finding of the temperature patterns and gas flow velocity has been described. The possibilities of the film growth in the horizontal CVD reactor have been considered. Some phenomena being important for deposition process (formation of vortex on front substrate edge in horizontal CVD reactor, three-dimensional effects in reactors of this configuration) and also for the modelling (heat conditions on subtrate surface and external walls of vertical cylindric RTCVD reactor, time of determining flow in this type of reactor) have been investigatedAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    ErrorTracer: an algorithm for identifying the origins of inconsistencies in genome-scale metabolic models

    No full text
    Motivation: The number and complexity of genome-scale metabolic models is steadily increasing, empowered by automated model-generation algorithms. The quality control of the models, however, has always remained a significant challenge, the most fundamental being reactions incapable of carrying flux. Numerous automated gap-filling algorithms try to address this problem, but can rarely resolve all of a model’s inconsistencies. The need for fast inconsistency checking algorithms has also been emphasized with the recent community push for automated modelvalidation before model publication. Previously, we wrote a graphical software to allow the modeller to solve the remaining errors manually. Nevertheless, model size and complexity remained a hindrance to efficiently tracking origins of inconsistency. Results: We developed the ErrorTracer algorithm in order to address the shortcomings of existing approaches: ErrorTracer searches for inconsistencies, classifies them and identifies their origins. The algorithm is 2 orders of magnitude faster than current community standard methods, using only seconds even for large-scale models. This allows for interactive exploration in direct combination with model visualization, markedly simplifying the whole error-identification and correction work flow. Availability and implementation: Windows and Linux executables and source code are available under the EPL 2.0. Licence at https://github.com/TheAngryFox/ModelExplorer and https://www.ntnu.edu/almaaslab/downloads. Contact: [email protected] or [email protected]. Supplementary information: Supplementary data are available at Bioinformatics onlin

    ModelExplorer - software for visual inspection and inconsistency correction of genome-scale metabolic reconstructions

    No full text
    Abstract Background Genome-scale metabolic network reconstructions are low level chemical representations of biological organisms. These models allow the system-level investigation of metabolic phenotypes using a variety of computational approaches. The link between a metabolic network model and an organisms’ higher-level behaviour is usually found using a constraint-based analysis approach, such as FBA (Flux Balance Analysis). However, the process of model reconstruction rarely proceeds without error. Often, considerable parts of a model cannot carry flux under any condition. This is termed model inconsistency and is caused by faulty topology and/or stoichiometry of the underlying reconstructed network. While there exist several automated gap-filling tools that may solve some of the inconsistencies, much of the work still needs to be carried out manually. The common “linear list” format of writing biochemical reactions makes it difficult to intuit what is at the root of the inconsistent behaviour. Unfortunately, we have frequently observed that model builders do not correct their models past the abilities of automated tools, leaving many widely used models significantly inconsistent. Results We have developed the software ModelExplorer, which main purpose is to fill this gap by providing an intuitive and visual framework that allows the user to explore and correct inconsistencies in genome-scale metabolic models. The software will automatically visualize metabolic networks as graphs with distinct separation and delineation of cellular compartments. ModelExplorer highlights reactions and species that are unable to carry flux (blocked), with several different consistency checking modes available. Our software also allows the automatic identification of neighbours and production pathways of any species or reaction. Additionally, the user may focus on any chosen inconsistent part of the model on its own. This facilitates a rapid and visual identification of reactions and species responsible for model inconsistencies. Finally, ModelExplorer lets the user freely edit, add or delete model elements, allowing straight-forward correction of discovered issues. Conclusion Overall, ModelExplorer is currently the fastest real-time metabolic network visualization program available. It implements several consistency checking algorithms, which in combination with its set of tracking tools, gives an efficient and systematic model-correction process

    Containing pandemics through targeted testing of households

    No full text
    Abstract Background While invasive social distancing measures have proven efficient to control the spread of pandemics failing wide-scale deployment of vaccines, they carry vast societal costs. The development of a diagnostic methodology for identifying COVID-19 infection through simple testing was a reality only a few weeks after the novel virus was officially announced. Thus, we were interested in exploring the ability of regular testing of non-symptomatic people to reduce cases and thereby offer a non-pharmaceutical tool for controlling the spread of a pandemic. Methods We developed a data-driven individual-based epidemiological network model in order to investigate epidemic countermeasures. This models is based on high-resolution demographic data for each municipality in Norway, and each person in the model is subject to Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics. The model was calibrated against hospitalization data in Oslo, Norway, a city with a population of 700k which we have used as the simulations focus. Results Finding that large households function as hubs for the propagation of COVID-19, we assess the intervention efficiency of targeted pooled household testing (TPHT) repeatedly. For an outbreak with reproductive number R=1.4, we find that weekly TPHT of the 25% largest households brings R below unity. For the case of R=1.2, our results suggest that TPHT with the largest 25% of households every three days in an urban area is as effective as a lockdown in curbing the outbreak. Our investigations of different disease parameters suggest that these results are markedly improved for disease variants that more easily infect young people, and when compliance with self-isolation rules is less than perfect among suspected symptomatic cases. These results are quite robust to changes in the testing frequency, city size, and the household-size distribution. Our results are robust even with only 50% of households willing to participate in TPHT, provided the total number of tests stay unchanged. Conclusions Pooled and targeted household testing appears to be a powerful non-pharmaceutical alternative to more invasive social-distancing and lock-down measures as a localized early response to contain epidemic outbreaks
    corecore