2,442 research outputs found

    Performance of large area CsI-RICH prototypes for ALICE at LHC

    Get PDF
    We present the performances of large area CsI-RICH prototypes obtained in single particle events. The differential quantum efficiency of the photocathodes has been deduced from Cherenkov rings by means of two different procedures: a direct measurement with a thin NaF radiator and a Monte Carlo based estimation for a C6_6F14_{14} radiator. A factor of merit of 45 cm1^{-1} has been found for the typical detector configuration. Two angle reconstruction algorithms have been used and the different errors affecting the Cherenkov angle resolution have been estimated combining the analytical treatment and the Monte Carlo simulation. Also the dependence on radiator thickness, Cherenkov ring radius, chamber voltage and particle incidence angle has been studied

    Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    Get PDF
    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mМ/kg of body weight, male mice - 1.4 mМ/kg, female rats - 2.8 mМ/kg, male rats - 5.6 mМ/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mМ/kg, male mice - 0.7 mМ/kg, male and female rats - 0.7 mМ/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic

    Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals

    Get PDF
    The optical transmission of photonic crystals self-assembled from colloidal nanospheres in opals and assembled from two-dimensional colloidal crystals in a periodic stack by the Langmuir-Blodgett technique has been compared. Elimination of all related zero order diffraction resonances other than that from growth planes and broadening and deepening of the remaining one-dimensional diffraction resonance have been observed for samples prepared by the Langmuir-Blodgett approach, which are explained in terms of the partial disorder of a crystal lattice. (c) 2007 American Institute of Physics.(DOI:10.1063/1.2714198

    Final tests of the CsI-based ring imaging detector for the ALICE experiment

    Get PDF
    We report on the final tests performed on a CsI-based RICH detector equipped with 2 C6_6F14_{14} radiator trays and 4 photocathodes, each of 64×\times38 cm2^2 area. The overall performance of the detector is described, using different gas mixtures, in view of optimizing the photoelectron yield and the pad occupancy. Test results under magnetic field up to 0.9 T, photocathode homogeneity and stability are presented

    Minimum Information about a Neuroscience Investigation (MINI) Electrophysiology

    Get PDF
    This module represents the formalized opinion of the authors and the CARMEN consortium, which identifies the minimum information required to report the use of electrophysiology in a neuroscience study, for submission to the CARMEN system (www.carmen.org.uk).
&#xa

    Izlučivanje razumljivih logičkih pravila iz neuronskih mreža. Primjena TREPAN algoritma u bioinformatici i kemoinformatici

    Get PDF
    TREPAN is an algorithm for the extraction of comprehensible rules from trained neural networks. The method has been applied successfully to biological sequence (bioinformatics) problems. It has now been extended to handle chemoinformatics (QSAR) datasets. The method has been shown to have advantages over traditional symbolic rule induction methods such as C5. Results obtained for bioinformatics and chemoinformatics problems using the TREPAN algorithm are presented.TREPAN je algoritam za izlučivanje razumljivih pravila iz neuronskih mreža nakon provedenoga postupka učenja. Metoda je uspješno primjenjivana na probleme u bioinformatici, za analizu bioloških sekvencija. Primjena TREPAN metode sada se proširuje i na analizu skupova podataka u kemoinformatici (QSAR). Pokazano je da metoda ima prednosti u odnosu na uobičajene postupke koji se rabe za indukciju simboličkih pravila poput metode C5. Prikazani su rezultati koji su dobiveni u analizi bioinformatičkih i kemoinformatičkih problema s pomo}u algoritma TREPAN

    A large area CsI RICH Detector in ALICE at LHC

    Get PDF
    A 1m2 CsI RICH prototype has been successfully tested in a hadron beam at CERN SPS. The prototype, fully equipped with 15k electronic channels, has been used to identify particles coming from pi-Be interactions. Track reconstruction has been performed by using a telescope consisting of four gas pad chambers. A detailed description of the detector will be presented and results from the test will be discussed.List of figuresFigure 1 Expected proton and antiproton yields including jet quenching mechanism in central Pb-Pb collisions at LHC.Figure 2 Schematic view of the HMPID CsI-RICHFigure 3 Experimental layout used at the SPS/H4 test beamFigure 4 Distributions of the mean number, per ring, of pad hits (Npad), electrons (Ntot) and Cherenkov photoelectrons (Nres) as a function of the single-electron mean pulse heightFigure 5 Mean single-electron pulse height as a function of high voltage measured at the centre of each of the four photocathodesFigure 6 Evaluation of the uniformity of the chamber gain for the photocathode PC32Figure 7 Azimuthal distribution of the photon pad hits in the Cherenkov fiducial zone (HV=2050 V)Figure 8 Photon angle (a) and track Cherenkov angle (b) distributions for beam events at the SPSFigure 9 Track density on the HMPID cathode plane in real 350 GeV/c pi--Be eventsFigure 10 Three dimensional display of an SPS 350 GeV/c pi--Be event. Eleven tracks are reconstructed in the telescope by requiring one hit on each pad chamber to reconstruct a track</UL

    Materials for stem cell factories of the future

    Get PDF
    The materials community is now identifying polymeric substrates that could permit translation of human pluripotent stem cells (hPSCs) from lab-based research to industrial scale biomedicine. Well defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large scale drug screening programs and clinical use, wherein >1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells for one patient is challenging and a rethink is needed to scalable technology with the potential to meet the needs of millions of patients a year. Here we consider the role of materials discovery, an emerging area of materials chemistry that is in a large part driven by the challenges posed by biologists to materials scientists1-4

    In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys

    Get PDF
    Directed energy deposition (DED) is a promising additive manufacturing technique for repair; however, DED is prone to surface waviness (humping) in thin-walled sections, which increases residual stresses and crack susceptibility, and lowers fatigue performance. Currently, the crack formation mechanism in DED is not well understood due to a lack of operando monitoring methods with high spatiotemporal resolution. Here, we use inline coherent imaging (ICI) to optically monitor surface topology and detect cracking in situ, coupled with synchrotron X-ray imaging for observing sub-surface crack healing and growth. For the first time, ICI was aligned off-axis (24° relative to laser), enabling integration into a DED machine with no alterations to the laser delivery optics. We achieved accurate registration laterally (0.93), directly tracking surface roughness and waviness. We intentionally seed humping into thin-wall builds of nickel super-alloy CM247LC, locally inducing cracking in surface valleys. Crack openings as small as 7 µm were observed in situ using ICI, including sub-surface signal. By quantifying both humping and cracking, we demonstrate that ICI is a viable tool for in situ crack detection
    corecore