24 research outputs found

    Hidden neotropical diversity: Greater than the sum of its parts

    No full text
    The diversity of tropical herbivorous insects has been explained as a direct function of plant species diversity. Testing that explanation, we reared 2857 flies from flowers and seeds of 24 species of plants from 34 neotropical sites. Samples yielded 52 morphologically similar species of flies and documented highly conserved patterns of specificity to host taxa and host parts. Widespread species of plants can support 13 species of flies. Within single populations of plants, we typically found one or more fly species specific to female flowers and multiple specialists on male flowers. We suggest that neotropical herbivorous insect diversity is not simply a function of plant taxonomic and architectural diversity, but also reflects the geographic distribution of hosts and the age and area of the neotropics

    Data from: Divergence before the host shift? Prezygotic reproductive isolation among three varieties of a specialist fly on a single host plant

    No full text
    1. Although divergence via host-plant shifting is a common theme in the speciation of some phytophagous insects, it is not clear whether host shifts are typically initiators of speciation or if they instead contribute to divergence events already in progress. While host shifts appear to be generally associated with speciation events for flies in the genus Strauzia, three sympatric varieties of the sunflower fly [Strauzia longipennis (Wiedemann)] co-occur on the same host plant in the Midwestern United States and may have evolved reproductive barriers without a host shift. 2. The strength of two prezygotic reproductive barriers was compared among the three S. longipennis varieties: one barrier that is often associated with divergent ecological selection (allochronic isolation), and another that is more likely to be independent of ecological selection (pre-copulatory sexual isolation). The presence and relative strength of each barrier between fly varieties were evaluated using microsatellites, no choice mating experiments, studies of allochronic isolation, and field collection data. 3. Evidence for both allochronic isolation and pre-copulatory sexual isolation was detected between the three varieties of S. longipennis. The measure of isolation calculated for each barrier between the three varieties was lower than measures calculated between different species of Strauzia found on different hosts, suggesting that subsequent host shifts may increase the degree of reproductive isolation. For Strauzia and other specialist insects, some reproductive isolation may evolve prior to, and indeed may facilitate, host shifts

    Data from: Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae)

    No full text
    Tropical herbivorous insects are astonishingly diverse and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host-plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host-plant species or host-plant parts. We use microsatellites to: 1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes); and 2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guianan Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use

    Anatomy of a Neotropical insect radiation

    No full text
    Abstract Background Much evolutionary theory predicts that diversity arises via both adaptive radiation (diversification driven by selection against niche-overlap within communities) and divergence of geographically isolated populations. We focus on tropical fruit flies (Blepharoneura, Tephritidae) that reveal unexpected patterns of niche-overlap within local communities. Throughout the Neotropics, multiple sympatric non-interbreeding populations often share the same highly specialized patterns of host use (e.g., flies are specialists on flowers of a single gender of a single species of host plants). Lineage through time (LTT) plots can help distinguish patterns of diversification consistent with ecologically limited adaptive radiation from those predicted by ecologically neutral theories. Here, we use a time-calibrated phylogeny of Blepharoneura to test the hypothesis that patterns of Blepharoneura diversification are consistent with an “ecologically neutral” model of diversification that predicts that diversification is primarily a function of time and space. Results The Blepharoneura phylogeny showed more cladogenic divergence associated with geography than with shifts in host-use. Shifts in host-use were associated with ~ 20% of recent splits ( 60% of older splits (> 3 Ma). In the overall tree, gamma statistic and maximum likelihood model fitting showed no evidence of diversification rate changes though there was a weak signature of slowing diversification rate in one of the component clades. Conclusions Overall patterns of Blepharoneura diversity are inconsistent with a traditional explanation of adaptive radiation involving decreases in diversification rates associated with niche-overlap. Sister lineages usually use the same host-species and host-parts, and multiple non-interbreeding sympatric populations regularly co-occur on the same hosts. We suggest that most lineage origins (phylogenetic splits) occur in allopatry, usually without shifts in host-use, and that subsequent dispersal results in assembly of communities composed of multiple sympatric non-interbreeding populations of flies that share the same hosts

    Data from: Anatomy of a neotropical insect radiation

    No full text
    Background: Much evolutionary theory predicts that diversity arises via both adaptive radiation (diversification driven by selection against niche-overlap within communities) and divergence of geographically isolated populations. We focus on tropical fruit flies (Blepharoneura, Tephritidae) that reveal unexpected patterns of niche-overlap within local communities. Throughout the Neotropics, multiple sympatric non-interbreeding populations often share the same highly specialized patterns of host use (e.g., flies are specialists on flowers of a single gender of a single species of host plants). Lineage through time (LTT) plots can help distinguish patterns of diversification consistent with ecologically limited adaptive radiation from those predicted by ecologically neutral theories. Here, we use a time-calibrated phylogeny of Blepharoneura to test the hypothesis that patterns of Blepharoneura diversification are consistent with an “ecologically neutral” model of diversification that predicts that diversification is primarily a function of time and space. Results: The Blepharoneura phylogeny showed more cladogenic divergence associated with geography than with shifts in host-use. Shifts in host-use were associated with ~20% of recent splits (60% of older splits (>3 Ma). In the overall tree, gamma statistic and maximum likelihood model fitting showed no evidence of diversification rate changes though there was a weak signature of slowing diversification rate in one of the component clades. Conclusions: Overall patterns of Blepharoneura diversity are inconsistent with a traditional explanation of adaptive radiation involving decreases in diversification rates associated with niche-overlap. Sister lineages usually use the same host-species and host-parts, and multiple non-interbreeding sympatric populations regularly co-occur on the same hosts. We suggest that most lineage origins (phylogenetic splits) occur in allopatry, usually without shifts in host-use, and that subsequent dispersal results in assembly of communities composed of multiple sympatric non-interbreeding populations of flies that share the same hosts

    Zooplankton-associated and free-living bacteria in the York River, Chesapeake Bay: comparison of seasonal variations and controlling factors

    Get PDF
    Trace caches deliver a high number of instructions per cycle to wide-issue superscalar processors. To overcome complex control flow, multiple branch predictors have to predict up to 3 conditional branches per cycle. These multiple branch predictors sometimes predict completely wrong paths of execution, degrading the average fetch bandwidth. This paper shows that such mispredictions can be detected by monitoring trace cache misses. Based on this observation, a new technique called trace substitution is introduced. On a trace cache miss, trace substitution overrides the predicted trace with a cached trace. If the substitution is correct, the fetch bandwidth increases. We show that trace substitution consistently improves the fetch bandwidth with 0.2 instructions per access. For inaccurate predictors, trace substitution can increase the fetch bandwidth with up to 2 instructions per access
    corecore