366 research outputs found

    Crusticorallina gen. nov., a nongeniculate genus in the subfamily Corallinoideae (Corallinales, Rhodophyta)

    Get PDF
    Molecular phylogenetic analyses of 18S rDNA (SSU) gene sequences confirm the placement of Crusticorallina gen. nov. in Corallinoideae, the first non-geniculate genus in an otherwise geniculate subfamily. Crusticorallina is distinguished from all other coralline genera by the following suite of morpho-anatomical characters: 1) sunken, uniporate gametangial and bi/tetrasporangial conceptacles, 2) cells linked by cell fusions, not secondary pit connections, 3) an epithallus of 1 or 2 cell layers, 4) a hypothallus that occupies 50% or more of the total thallus thickness, 5) elongate meristematic cells, 6) trichocytes absent. Four species are recognized based on rbcL, psbA and COI-5P sequences, C. painei sp. nov., the generitype, C. adhaerens sp. nov., C. nootkana sp. nov. and C. muricata comb. nov., previously known as Pseudolithophyllum muricatum. Type material of Lithophyllum muricatum, basionym of C. muricata, in TRH comprises at least two taxa, and therefore we accept the previously designated lectotype specimen in UC that we sequenced to confirm its identity. Crusticorallina species are very difficult to distinguish using morpho-anatomical and/or habitat characters, although at specific sites, some species may be distinguished by a combination of morpho-anatomy, habitat and biogeography. The Northeast Pacific now boasts six coralline endemic genera, far more than any other region of the world. This article is protected by copyright. All rights reserved

    Fluorescence Photooxidation with Eosin - a Method for High-Resolution Immunolocalization and in-Situ Hybridization Detection for Light and Electron-Microscopy

    Get PDF
    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate

    A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework

    Get PDF
    The breadth of information resources available to researchers on the Internet continues to expand, particularly in light of recently implemented data-sharing policies required by funding agencies. However, the nature of dense, multifaceted neuroscience data and the design of contemporary search engine systems makes efficient, reliable and relevant discovery of such information a significant challenge. This challenge is specifically pertinent for online databases, whose dynamic content is ‘hidden’ from search engines. The Neuroscience Information Framework (NIF; http://www.neuinfo.org) was funded by the NIH Blueprint for Neuroscience Research to address the problem of finding and utilizing neuroscience-relevant resources such as software tools, data sets, experimental animals and antibodies across the Internet. From the outset, NIF sought to provide an accounting of available resources, whereas developing technical solutions to finding, accessing and utilizing them. The curators therefore, are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping the contents current. In the initial phases of the project, all aspects of the registration and curation processes were manual. However, as the number of resources grew, manual curation became impractical. This report describes our experiences and successes with developing automated resource discovery and semiautomated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. We also describe the DISCO framework, a suite of automated web services that significantly reduce manual curation efforts to periodically check for resource updates. Lastly, we discuss DOMEO, a semi-automated annotation tool that improves the discovery and curation of resources that are not necessarily website-based (i.e. reagents, software tools). Although the ultimate goal of automation was to reduce the workload of the curators, it has resulted in valuable analytic by-products that address accessibility, use and citation of resources that can now be shared with resource owners and the larger scientific community

    Cardiac Magnetic Resonance–Derived Extracellular Volume Mapping for the Quantification of Hepatic and Splenic Amyloid

    Get PDF
    BACKGROUND: Systemic amyloidosis is characterized by amyloid deposition that can involve virtually any organ. Splenic and hepatic amyloidosis occurs in certain types, in some patients but not others, and may influence prognosis and treatment. SAP (serum amyloid P component) scintigraphy is uniquely able to identify and quantify amyloid in the liver and spleen, thus informing clinical management, but it is only available in 2 centers globally. The aims of this study were to examine the potential for extracellular volume (ECV) mapping performed during routine cardiac magnetic resonance to: (1) detect amyloid in the liver and spleen and (2) estimate amyloid load in these sites using SAP scintigraphy as the reference standard. METHODS: Five hundred thirty-three patients referred to the National Amyloidosis Centre, London, between 2015 and 2017 with suspected systemic amyloidosis who underwent SAP scintigraphy and cardiac magnetic resonance with T1 mapping were studied. RESULTS: The diagnostic performance of ECV to detect splenic and hepatic amyloidosis was high for both organs (liver: area under the curve, -0.917 [95% CI, 0.880-0.954]; liver ECV cutoff, 0.395; sensitivity, 90.7%; specificity, 77.7%; P<0.001; spleen: area under the curve, -0.944 [95% CI, 0.925-0.964]; spleen ECV cutoff, 0.385; sensitivity, 93.6%; specificity, 87.5%; P<0.001). There was good correlation between liver and spleen ECV and amyloid load assessed by SAP scintigraphy (r=0.504, P<0.001; r=0.693, P<0.001, respectively). There was high interobserver agreement for both the liver and spleen (ECV liver intraclass correlation coefficient, 0.991 [95% CI, 0.984-0.995]; P<0.001; ECV spleen intraclass correlation coefficient, 0.995 [95% CI, 0.991-0.997]; P<0.001) with little bias across a wide range of ECV values. CONCLUSIONS: Our study demonstrates that ECV measurements obtained during routine cardiac magnetic resonance scans in patients with suspected amyloidosis can identify and measure the magnitude of amyloid infiltration in the liver and spleen, providing important clues to amyloid type and offering a noninvasive measure of visceral amyloid burden that can help guide and track treatment

    Linking Ecomechanical Models and Functional Traits to Understand Phenotypic Diversity

    Get PDF
    Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This \u27ecomechanical approach\u27 integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework

    Test, Reliability and Functional Safety Trends for Automotive System-on-Chip

    Get PDF
    This paper encompasses three contributions by industry professionals and university researchers. The contributions describe different trends in automotive products, including both manufacturing test and run-time reliability strategies. The subjects considered in this session deal with critical factors, from optimizing the final test before shipment to market to in-field reliability during operative life

    Deep learning of the retina enables phenome- and genome-wide analyses of the microvasculature.

    Get PDF
    Background: The microvasculature, the smallest blood vessels in the body, has key roles in maintenance of organ health as well as tumorigenesis. The retinal fundus is a window for human in vivo non-invasive assessment of the microvasculature. Large-scale complementary machine learning-based assessment of the retinal vasculature with phenome-wide and genome-wide analyses may yield new insights into human health and disease. Methods: We utilized 97,895 retinal fundus images from 54,813 UK Biobank participants. Using convolutional neural networks to segment the retinal microvasculature, we calculated fractal dimension (FD) as a measure of vascular branching complexity, and vascular density. We associated these indices with 1,866 incident ICD-based conditions (median 10y follow-up) and 88 quantitative traits, adjusting for age, sex, smoking status, and ethnicity. Results: Low retinal vascular FD and density were significantly associated with higher risks for incident mortality, hypertension, congestive heart failure, renal failure, type 2 diabetes, sleep apnea, anemia, and multiple ocular conditions, as well as corresponding quantitative traits. Genome-wide association of vascular FD and density identified 7 and 13 novel loci respectively, which were enriched for pathways linked to angiogenesis (e.g., VEGF, PDGFR, angiopoietin, and WNT signaling pathways) and inflammation (e.g., interleukin, cytokine signaling). Conclusions: Our results indicate that the retinal vasculature may serve as a biomarker for future cardiometabolic and ocular disease and provide insights on genes and biological pathways influencing microvascular indices. Moreover, such a framework highlights how deep learning of images can quantify an interpretable phenotype for integration with electronic health records, biomarker, and genetic data to inform risk prediction and risk modification

    Kinematic Edges with Flavor Oscillation and Non-Zero Widths

    Full text link
    Kinematic edges in cascade decays provide a probe of the masses of new particles. In some new physics scenarios the decay chain involves intermediate particles of different flavors that can mix and oscillate. We discuss the implication of such oscillation, and in particular its interplay with the non-zero widths of the particles. We derive explicit formulae for differential decay rates involving both non-zero widths and oscillation, and show that in the case where the mass difference between the intermediate particle is of the order of their widths, both oscillation and width effects are important. An examination of the physical observables contained in these differential decay rates is provided. We calculate differential decay rates for cases in which the intermediate particles are either scalars or fermions.Comment: 28 pages, 6 figure
    • …
    corecore