101 research outputs found

    Drag Reduction in Wave-Swept Macroalgae: Alternative Strategies and New Predictions

    Get PDF
    Premise of the study: Intertidal macroalgae must resist extreme hydrodynamic forces imposed by crashing waves. How does frond flexibility mitigate drag, and how does flexibility affect predictions of drag and dislodgement in the field? Methods: We characterized flexible reconfiguration of six seaweed species in a recirculating water flume, documenting both shape change and area reduction as fronds reorient. We then used a high-speed gravity-accelerated water flume to test our ability to predict drag under waves based on extrapolations of drag recorded at slower speeds. We compared dislodgement forces to drag forces predicted from slow- and high-speed data to generate new predictions of survivorship and maximum sustainable frond size along wave-swept shores. Key results: Bladed algae were generally shape changers , limiting drag by reducing drag coefficients, whereas the branched alga Calliarthron was an area reducer , limiting drag by reducing projected area in flow. Drag predictions often underestimated actual drag measurements at high speeds, suggesting that slow- speed data may not reflect the performance of flexible seaweeds under breaking waves. Several seaweeds were predicted to dislodge at similar combinations of velocity and frond size, suggesting common scaling factors of dislodgement strength and drag. Conclusions: Changing shape and reducing projected area in flow are two distinct strategies employed by flexible seaweeds to resist drag. Flexible reconfiguration contributes to the uncertainty of drag extrapolation, and researchers should use caution when predicting drag and dislodgement of seaweeds in the field

    Crusticorallina gen. nov., a nongeniculate genus in the subfamily Corallinoideae (Corallinales, Rhodophyta)

    Get PDF
    Molecular phylogenetic analyses of 18S rDNA (SSU) gene sequences confirm the placement of Crusticorallina gen. nov. in Corallinoideae, the first non-geniculate genus in an otherwise geniculate subfamily. Crusticorallina is distinguished from all other coralline genera by the following suite of morpho-anatomical characters: 1) sunken, uniporate gametangial and bi/tetrasporangial conceptacles, 2) cells linked by cell fusions, not secondary pit connections, 3) an epithallus of 1 or 2 cell layers, 4) a hypothallus that occupies 50% or more of the total thallus thickness, 5) elongate meristematic cells, 6) trichocytes absent. Four species are recognized based on rbcL, psbA and COI-5P sequences, C. painei sp. nov., the generitype, C. adhaerens sp. nov., C. nootkana sp. nov. and C. muricata comb. nov., previously known as Pseudolithophyllum muricatum. Type material of Lithophyllum muricatum, basionym of C. muricata, in TRH comprises at least two taxa, and therefore we accept the previously designated lectotype specimen in UC that we sequenced to confirm its identity. Crusticorallina species are very difficult to distinguish using morpho-anatomical and/or habitat characters, although at specific sites, some species may be distinguished by a combination of morpho-anatomy, habitat and biogeography. The Northeast Pacific now boasts six coralline endemic genera, far more than any other region of the world. This article is protected by copyright. All rights reserved

    Radar Altimetry as a Robust Tool for Monitoring the Active Lava Lake at Erebus Volcano, Antarctica

    Get PDF
    The level of lava within a volcanic conduit reflects the overpressure within a connected magma reservoir. Continuous monitoring of lava level can therefore provide critical insights into volcanic processes, and aid hazard assessment. However, accurate measurements of lava level are not easy to make, partly owing to the often dense fumes that hinder optical techniques. Here, we present the first radar instrument designed for the purpose of monitoring lava level, and report on its successful operation at Erebus volcano, Antarctica. We describe the hardware and data processing steps followed to extract a time series of lava lake level, demonstrating that we can readily resolve ~1 m cyclic variations in lake level that have previously been recognised at Erebus volcano. The performance of the radar (continuous, automated data collection in temperatures of around -30°C) indicates the suitability of this approach for sustained automated measurements at Erebus and other volcanoes with lava lakes

    The Resource Identification Initiative: A cultural shift in publishing

    Get PDF
    A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to allow humans and algorithms to identify the exact resources that are reported or answer basic questions such as What other studies used resource X? To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (including software and databases). RRIDs represent accession numbers assigned by an authoritative database, e.g., the model organism databases, for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal ( www.scicrunch.org/resources). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are generally accurate in performing the task of identifying resources and supportive of the goals of the project. We also show that identifiability of the resources pre- and post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on reproducibility relating to research resources

    A Guide to the Brain Initiative Cell Census Network Data Ecosystem

    Get PDF
    Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain

    Ancient origin of the biosynthesis of lignin precursors

    Get PDF
    BACKGROUND: Lignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants. The recent discovery of lignin or its precursors in various algae has raised questions on the evolution of its biosynthetic pathway, which could be much more ancient than previously thought. To determine the taxonomic distribution of the lignin biosynthesis genes, we screened all publicly available genomes of algae and their closest non-photosynthetic relatives, as well as representative land plants. We also performed phylogenetic analysis of these genes to decipher the evolution and origin(s) of lignin biosynthesis. RESULTS: Enzymes involved in making p-coumaryl alcohol, the simplest lignin monomer, are found in a variety of photosynthetic eukaryotes, including diatoms, dinoflagellates, haptophytes, cryptophytes as well as green and red algae. Phylogenetic analysis of these enzymes suggests that they are ancient and spread to some secondarily photosynthetic lineages when they acquired red and/or green algal endosymbionts. In some cases, one or more of these enzymes was likely acquired through lateral gene transfer (LGT) from bacteria. CONCLUSIONS: Genes associated with p-coumaryl alcohol biosynthesis are likely to have evolved long before the transition of photosynthetic eukaryotes to land. The original function of this lignin precursor is therefore unlikely to have been related to water transport. We suggest that it participates in the biological defense of some unicellular and multicellular algae. REVIEWERS: This article was reviewed by Mark Ragan, Uri Gophna, Philippe Deschamps

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    BioCaMPS - Support Activities on E2E Calibration and Mission Performance Aspects: Mission Performance Report Issue 6

    No full text
    This document summarizes the work carried out and the results achieved by the DLR team in the framework of the BioCaMPS project "Support Activities on E2E Calibration and Performance aspects related to the Biomass Mission supporting the Biomass mission" for ESA with respect to reviewing Mission Performance related aspects of the Biomass mission

    BioCaMPS - Support Activities on E2E Calibration and Mission Performance Aspects: Mission Performance Report Issue 4

    No full text
    This document summarizes the work carried out and the results achieved by the DLR team in the framework of the BioCaMPS project "Support Activities on E2E Calibration and Performance aspects related to the Biomass Mission supporting the Biomass mission" for ESA with respect to reviewing Mission Performance related aspects of the Biomass mission

    BioCaMPS - Support Activities on E2E Calibration and Mission Performance Aspects: Mission Performance Report Issue 5

    No full text
    This document summarizes the work carried out and the results achieved by the DLR team in the framework of the BioCaMPS project "Support Activities on E2E Calibration and Performance aspects related to the Biomass Mission supporting the Biomass mission" for ESA with respect to reviewing Mission Performance related aspects of the Biomass mission
    corecore