9,218 research outputs found

    Cosmic String Network Evolution in arbitrary Friedmann-Lemaitre models

    Get PDF
    We use the velocity-dependent one-scale model by Martins & Shellard to investigate the evolution of a GUT long cosmic string network in arbitrary Friedmann-Lemaitre models. Four representative models are used to show that in general there is no scaling solution. The implications for structure formation are briefly discussed.Comment: 8 pages, 4 postscript figures included, submitted to Phys. Rev.

    A Visual {DSL} for the certification of open source software

    Get PDF
    Quality assessment of open source software is becoming an important and active research area. One of the reasons for this recent interest is the consequence of Internet popularity. Nowadays, programming also involves looking for the large set of open source libraries and tools that may be reused when developing our software applications. In order to reuse such open source software artifacts, programmers not only need the guarantee that the reused artifact is certified, but also that independently developed artifacts can be easily combined into a coherent piece of software. In this paper we improve over previous works and describe a visual language that allows programmers to graphically describe how software artifacts can be combined into powerful software certification processes. This paper introduces the visual language and describes how its elements are available to the user through an intuitive interface.(undefined

    Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups

    Full text link
    In the framework of large deformation diffeomorphic metric mapping (LDDMM), we develop a multi-scale theory for the diffeomorphism group based on previous works. The purpose of the paper is (1) to develop in details a variational approach for multi-scale analysis of diffeomorphisms, (2) to generalise to several scales the semidirect product representation and (3) to illustrate the resulting diffeomorphic decomposition on synthetic and real images. We also show that the approaches presented in other papers and the mixture of kernels are equivalent.Comment: 21 pages, revised version without section on evaluatio

    Yang-Baxter equation for the asymmetric eight-vertex model

    Full text link
    In this note we study `a la Baxter [1] the possible integrable manifolds of the asymmetric eight-vertex model. As expected they occur when the Boltzmann weights are either symmetric or satisfy the free-fermion condition but our analysis clarify the reason both manifolds need to share a universal invariant. We also show that the free-fermion condition implies three distinct classes of integrable models.Comment: Latex, 12 pages, 1 figur

    Coarse-grained description of a passive scalar

    Full text link
    The issue of the parameterization of small-scale dynamics is addressed in the context of passive-scalar turbulence. The basic idea of our strategy is to identify dynamical equations for the coarse-grained scalar dynamics starting from closed equations for two-point statistical indicators. With the aim of performing a fully-analytical study, the Kraichnan advection model is considered. The white-in-time character of the latter model indeed leads to closed equations for the equal-time scalar correlation functions. The classical closure problem however still arises if a standard filtering procedure is applied to those equations in the spirit of the large-eddy-simulation strategy. We show both how to perform exact closures and how to identify the corresponding coarse-grained scalar evolution.Comment: 22 pages; submitted to Journal of Turbulenc

    Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy

    Full text link
    Quantum point contacts exhibit mysterious conductance anomalies in addition to well known conductance plateaus at multiples of 2e^2/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position
    corecore