
A Visual DSL for the Certification of
Open Source Software

Tiago Carção and Pedro Martins?

HASLab / INESC TEC, Universidade do Minho, Portugal
{tiagocarcao, prmartins}@di.uminho.pt

Abstract. Quality assessment of open source software is becoming an
important and active research area. One of the reasons for this recent
interest is the consequence of Internet popularity. Nowadays, program-
ming also involves looking for the large set of open source libraries and
tools that may be reused when developing our software applications. In
order to reuse such open source software artifacts, programmers not only
need the guarantee that the reused artifact is certified, but also that in-
dependently developed artifacts can be easily combined into a coherent
piece of software.
In this paper we improve over previous works and describe a visual lan-
guage that allows programmers to graphically describe how software arti-
facts can be combined into powerful software certification processes. This
paper introduces the visual language and describes how its elements are
available to the user through an intuitive interface.

Keywords: Software Analysis, Software Certification, Open Source Soft-
ware, Programming Languages, Process Management, Web

1 Introduction

The advent and massive use of the Internet not only changed how people com-
municate, for example, via social networks, but also how software developers
build their large and complex software systems. For software developers one of
the main results of the Internet was the creation of large open source software
repositories, such as sourceforge, where we may find libraries and tools for an
immense variety of problems.

As a consequence, developing software nowadays not only involves reusing
libraries provided by the underlying programming language, but also reusing
libraries and tools that have been built by other software engineers and that are
available as open source software.

In order to reuse such open source software, developers need to trust that
software and, as a consequence, they often need to be certified that a reused

? This work is co-financed by the North Portugal Regional Operational Programme
(ON.2 O Novo Norte), under the National Strategic Reference Framework (NSRF),
through the European Regional Development Fund (ERDF), within project NORTE-
07-0124-FEDER-000058.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Tiago Carção, Pedro Martins

software artifact does satisfy certain properties. For example, a developer may
need to be sure that the copyrights involved in the reused software allow its
usage. In our context, we refer to analyzing a property of piece of open source
software as its certification.

In this paper we extend our work on developing a customizable web portal
[1] for the certification of reusable, open source software packages. One of the
main features of our web portal for the certification of open source software
is the Domain Specific Language (DSL), introduced in [2]. This DSL allows the
users of the web portal to define/combine new certifications as the combination of
several different software tools. This DSL is implemented in the web portal as an
Embedded DSL (EDSL): a DSL embedded in the Haskell programming language.
Although this approach is powerful and did allow a quick development of the
web portal, it contains two main issues: First, to define a new certification in that
EDSL, the software developer needs to be an expert in the Haskell programming
language. Secondly, and most important, the EDSL provides both poor syntax
and error reporting since they are provided by the host language.

The purpose of this paper is two-fold:

– Firstly, we introduce a Visual Domain Specific Language (VDSL) where it
is easy to specify the reuse and combination of (open source) software tools.
Moreover, we build a proper compiler for such VDSL which reports errors
in the web portal domain. This compiler translates the visual DSL to our
former textual Haskell-based EDSL.

– Secondly, we present a case study where a tool to monitor energy consump-
tion is specified in our visual DSL. Thus, we show how the widely used (open
source) graph visualization tool GraphViz tool is instrumented in order to
produce a report showing the energy consumption per its functions.

This paper is organized as follows. In Section 2 we provide an overview of the
motivation and potential challenges this work faces. In Section 3 we introduce
our visual language together with small examples of its usage. In Section 4 we
present the process of creating a certification. The case study that we have used
to demonstrate our VDSL is described in Section 5. In Section 6 we provide an
overview of related works, and finally in Section 7 we conclude.

2 Motivation

The CROSS portal developed encloses the composition of tools to certify soft-
ware. By a Certification we mean the execution of a software analysis tool that is
capable of processing a source code file and of producing an information report.

These certifications can be composed out of various elements which can be
arranged in a way that produces the wanted analysis, through a textual DSL pre-
sented in the portal. This DSL combines components, which are simple processes
which together compose a certification.

In the same certification multiple analysis can be done, as in the DSL we have
a notion of flow of information: from the program the user sequences components



A Visual DSL for the Certification of Open Source Software 3

that transform inputs and produce new results which are themselves fueled to
other components. In each certification, multiple flows can be implemented and
then joined by a special type of component, an aggregator. Figure 1 shows a
certification illustrating an analysis to a program with five different components.

Component1 Component2

Component4

Component3

Component5

+

Certification1

Fig. 1: An example of a certification composed by five components.

Despite the powerful characteristics of the DSL, and the powerful analysis
that can be implemented with it, the fact that this is a textual language embed-
ded in hosting languages creates some disadvantages in this environment.

Firstly, having a textual representation forces the user to learn a new lan-
guage. It is defined by constructs and primitives that user has to be aware of,
as well as a set of syntactic and semantic rules mandatory to the creation of
certifications. A visual language is much more intuitive, with drag and drop in-
terfaces and real-time visualization of the flow of information, the learning curve
is greatly diminished. Secondly, one great disadvantage of embedded DSLs is
that error messages are related to the hosting language, not to the domain. This
means that in the example of the web portal CROSS, whenever a user acciden-
tally makes an error he is presented with error messages that have no relation
whatsoever with the domain of software analysis or processes composition. This
can make using the DSL hard for users not familiar with the hosting language.

A visual language make everything easier to handle: graphical representa-
tions of process relation are always visible, some errors can be avoided just by
forbidding specific, invalid certifications on the graphical environment and er-
rors are targeted to the specific domain of software analysis, making debug of
certifications much easier and faster.

3 A Visual Language for Certifications

In this section we will introduce the visual language developed to allow easy
implementation of processes in our portal. To desing such VDSL, we started by
identifying all syntactic elements of the textual language; and by understanding
how to recreate them visually. Their graphic representation would allow a more
intuitive use of the language and reduce its associated learning curve.

In order to create a new certification, users always need to specify a flow that
the certifying programs must follow. This flow starts in the inserted input and



4 Tiago Carção, Pedro Martins

goes through a series of components to generate a report. From the same input,
multiple customized flows of information can be used, but they must eventually
be explicitly aggregated to generate a report. These elements are linked together
by a connection that symbolizes the notion of the program flow between them.

The existing elements in the textual language which should be represented in
the visual language are: input, connection, components and aggregators, which
we shall present next.

The components of our visual language have been implemented in a system
that is not restrictive on their organization and layout. This allows users to
rearrange positions and connections with little effort. The fact that this is a flex-
ible environment but with controlled actions, unobtrusively enforces the correct
construction of certifications.

The elements which were identified in the textual language and implemented
in the visual language are explained next in detail.

3.1 Input

The input represents the program to certify, and from here a certification can
be composed. Each added component will indicate the action to be applied to
the input. The textual representation can be seen in Listing 1.1.

Listing 1.1: Input specified in the textual language.

Input

The graphic design of the input element, as is shown in Figure 2, is similar
to the UML input for flow diagrams.

Fig. 2: The Input graphical representation.

3.2 Component

A component is an element of the flow of information throughout a certification.
The functionality of this element can be see as a single process to which infor-
mation is fed and producing a desired result. All components have at least on
input type and one input type, but some have various which have to be defined
by the user.

Each component has a standard format: a parallelogram with unique and
useful visual information. From the textual language, presented in Listing 1.2,
we can see that each component has a name (which by definition is unique within



A Visual DSL for the Certification of Open Source Software 5

all components), and the description of its input and output type.

Listing 1.2: A Component specified in the textual language

(readFile , "-j", "-s")

Our visual language allows easy navigation and selection of the available
components in the portal. For each component, relevant information is shown:
the description of the component, and the input/output types it supports. To
choose a component and add it to the certification creation process, it is necessary
to select the component from the set of available components and to customize
it by choosing its input and output types.

In the example of Figure 3, the user selected the component readFile, with
Java as the input type and text as its output type.

Fig. 3: Information presented to the user, associated with the available components.

The graphical representation of a component, as can be seen in Figure 4,
shows its name and the chosen languages for input and output separated by a
symbol of transformation ->. Also indicated is a green circle representing the
point of input where one can connect the flow either from the initial input, from
other component or from an aggregator. The blue circle is the output point.

Fig. 4: A Component specified in the visual language.

3.3 Aggregation

An aggregator is a specific type of component that aggregates various flows of
information. This element can be seen as a special type of component and there-



6 Tiago Carção, Pedro Martins

for the graphical representation of an aggregator is similar to the representation
of a component.

In our textual representation, an aggregator would be represented as seen in
Listing 1.3.

Listing 1.3: Textual version of an aggregator that takes the number of lines of multiple
sources and produces a report.

>|> (Aggregator , "-i", "-rep")

Adding an aggregator, in our visual environment is similar to adding a typical
component: the user has to choose from a list of available aggregators. As other
components they where they can see detailed information about it, such as its
functionality and type.

The graphical representation of an aggregator, which can be seen in Figure
5, has a name that is unique within all aggregators and the input and output
language separated by a symbol of transformation ->.

Fig. 5: Example of an aggregator, that takes the number of lines of multiple sources
and produces a report.

Since there are differences between how an aggregator and a typical compo-
nent handles input information, with an aggregator being an element that will
receive information from multiple sources, we changed the aspect of the input
point to be represented as a green square meaning it can receive multiple flows.
In component the input point, as shown in Subsection 3.2, is a green circle. Since
the output works like a normal component, the graphical output representation
is a blue circle.

3.4 Connection

The connection is the element linking two components or a component to an
aggregator. Each connection has an arrow that showing of the flow and a label
displaying the types that flow will handle, as can be seen in Figure 6 represented
by the yellow arrow.



A Visual DSL for the Certification of Open Source Software 7

Fig. 6: Connecting two components.

4 Creating Certifications

With the visual language elements, defined in the previous section, we shall
now describe how different types of certifications with multiple components and
layouts can be defined in our setting.

4.1 Sequential Flow

Our visual language allows a wide type of certifications, based on flows of infor-
mation, to be implemented. One of these possibilities is the sequential flow.

Listing 1.4: Sequential flow of information in a textual form.

Input

>- (readFile , "-c", "-s")

>- (text2NLines , "-s", "-i")

>- (int2Report , "-i", "-rep")

This flow is a connection of tools in a sequential order, allowing the analysis
of a software program all the way from the Input to the generation of a final
report, chaining different components throughout the process.

One example of a certification is one where we want to analyze the number
of lines in a C program. In the textual language we have to write the sequence
of components linked by the combinator >- and make sure that the types and
their representation is correct, as can be seen in Listing 1.4.

In the visual language, this process is faster and more intuitive. The user only
needs to select the tools and its types, and link them with connections. Since
our visual setting is restricted by invalid connections, the user does not have to
worry about the correctness of the language syntax, since these are simply not
allowed.

An example of the implementation of the certification to analyze the number
of lines in a C program can be seen in Figure 7.

4.2 Parallel Flow

In addition to the sequential flow, our setting also supports parallel flows of
information obtained when combining the components in two or more process



8 Tiago Carção, Pedro Martins

Fig. 7: Sequential flow of information.

chains. This flow, can have multiple paths, where each of these paths is sequential
and joined by the element aggregator.

For instance, let us imagine that we want to analyze a tool, and know how
many ifs conditions and for loops it has. This can be done by implementing a
certification with two paths, where one counts the number of ifs conditions and
the other counts the number of for loops. Afterwards, the results are joined by
an aggregator producing a report.

Listing 1.5: Parallel flows of information described textually.

Input

>- (readFile , "-c", "-s")

>- (text2NFors , "-s", "-i") >|

Input

>- (readFile , "-c", "-s")

>- (text2NIfs , "-s", "-i") >|>

(Aggregator , "-i", "-rep")

This certification can be expressed in the textual language by building two
different paths. For each path, the user has to define the flow from the Input and
include the combinator >| in the end to give an indication that the returned
information will be aggregated. This can be seen in Listing 1.5.

In order to build this certification we need to add two paths. We need to
start each of these paths with the readFile component. In order to count the
number of for loops, in the left path, we add the text2NFors component. We do
the same in the right path but this time to count the if loops, using the element
text2NFors component. These two components produce integers in their analysis,
which are funneled to an aggregator which generates a report with the relevant
informations. The graphical representation of this process is in Figure 8.



A Visual DSL for the Certification of Open Source Software 9

Fig. 8: Parallel flows of information.

4.3 Verification

As explained before, creating certifications in our settings has some rules, related
to type correctness and to the structure of the computation chain that composes
the certification. One important rule comes from the connection of a component1

to a component2, where the first must have the same output type as the input
type of the second.

These rules, in the textual language, can only be verified when the certifica-
tion is fully constructed. Only after the user describes the certification can the
the syntax and semantics of the language be analyzed.

In our visual language, this verification is done in real time. When one tries to
link two components and their type do not match, an alert notification appears
and the system simply forbids the creation of this connection. This is exemplified
in Figure 9.

Another important rule when defining a certification is that one path must be
continuous and sequential, i.e., all components in the certification must be linked
together in a sequential manner. Elements of a certification are have to be fed
an input to produce their result. This verification is automatically performed
and all errors found are signaled and presented to the user, as we can see in
Figure 10.

In Figure 11 we see yet another example of how our visual language aids in
certification construction. In this example there are multiple paths which should
be joined by an aggregator. This, as we saw in Figure 10, is also verified and any
problems found are presented to the user..

Due to its interactive nature, a visual language improves over a previous
textual approach as problems are easier to detect and are presented to the user



10 Tiago Carção, Pedro Martins

Fig. 9: Trying to establish a connection between two incompatible components.

Fig. 10: Trying to create a certification with a broken path.

Fig. 11: Trying to create a certification with multiple paths not joined by an aggregator.

in a setting that is easier to understand and to correct. Furthermore, some
problems, typical of a textual setting, are simply inexistent here as the visual
environment denies certain compositions of elements.

4.4 Technical Details

In order to facilitate familiarization with the language and to improve user-
experience when dealing with it, we were influenced by existing visual elements of



A Visual DSL for the Certification of Open Source Software 11

the Unified Modeling Language (UML) to represent some of its items. In Figure 12,
for example, we see a graphical representation of the Input very similar to the one
found in UML. Another example of similarities is in the flow presented in activity
diagrams, with boxes containing important nodes in the flow of information and
arrow relating these boxes.

Fig. 12: Start point of UML activity diagrams.

This language was conceived to be embedded in an open source analysis web
portal - CROSS [1]1. Since we are dealing with a web environment, the chosen
techniques relate to the ones widely used when developing web applications.

The visual language was developed using the programming language JavaScript.
Alongside JavaScript, we used a well-known framework for the language, jQuery2.
This framework simplifies the use of JavaScript and adds the possibility of using
plugins to further aid in the development.

One plug-in used was jsPlumb3, a plug-in that allows an environment where
one can connect elements in a UI. This environment can be used to represent
state machine or activity diagrams and user-specified diagrams. All the source
code that implements the visual language can be can be consulted in the web
portal, at www.cross.di.uminho.pt.

5 Case Study

The visual language for certifications presented in this work was designed to be
used with different components and in different contexts, covering a wide range
of possible analysis.

In this section we will present an example of how the functionality of the web
postal can be used to analise a software program, written in the C programming
language, and produce a report with information regarding energy consumption.

To do so, we use a work that has been developed in the context of power
consumption in software [3]. In this particular work, techniques were developed
to measure the impact of software design in energy consumption, a topic of high
relevance with the current wide usage of smartphones and other mobile devices.

The analysis that we intend to make, regarding power consumption, goes
through different phases. Initially it is necessary to instrument all the software
modules so that each function can produce an output in order to know how much
energy was spent on processing when the function was called. Once the software
has been instrumented, it must be compiled to machine code.

1 www.cross.di.uminho.pt
2 http://jquery.com
3 http://jsplumbtoolkit.com/



12 Tiago Carção, Pedro Martins

Fig. 13: Certification of energy consumption analysis for GraphViz

One of the known methods we can use is the Spectrum-based Fault Localization
(SFL) [4]. This method uses the information of the running spectrum of the
program and, along with the information about the input and the expected
output, can indicate what are the faults in the software.

Adapting an SFL-based algorithm to the energy analysis consumption creates
an adapted SFL model for energy consumption, with which we can use the energy
consumption information and build a matrix with the spectrum of the program
consumption and, again, apply SFL techniques to obtain information from a
matrix. All this can be seen in [3].

This analysis of the energy consumption can be made with a certification
using a combination of various tool and components. Doing so, aids the user
in implementing the analysis as he/she does not have to fiddle with the typical
textual language constructs we have seen before.

As input for the study case we chose the open source tool GraphViz4. GraphViz
is a software tool that allows textual representations to be presented in a visual
format, such as graphs. This tool has different modes of presentation and is
widely configurable.

4 www.graphviz.org



A Visual DSL for the Certification of Open Source Software 13

In order to allow the representation of every phase of the energy consumption
analysis in the certification creation process it is necessary to choose which tools
must be available. The instrumentation of the ¸software modules can be made
by using a tool developed which uses clang to instrument the software.

The software compilation is made with gcc5. To execute Graphviz with dif-
ferent inputs we have used a tool that contains a textual graph sample and runs
Graphviz with different flags, generating different visualizations. We have also
used a tool that collects the outputs of power consumption of each function and
builds the SFL matrix.

The tool to analyze the SFL matrix and to present the functions with prob-
lems was Zoltar [5] as. Thus, a tool that gathers the Zoltar output and generates
a report describing software consumption using a graph bar which is explained
in [3] was also used. This tool has the additional function of pretty printing the
software with information about functions’ energy consumption.

This certification implemented in our visual language can be seen in Figure
13. In this certification we can see that there are two paths, one of the paths
represents the flow of code instrumentation, gathering results, and analyzing the
SFL information. In the other path we have the flow that will allow the pretty
printing. Both paths are joined in an aggregator that will assimilate and produce
a report which is the conjunction of the results of both paths.

The certification produces a report with the GraphViz consumption values,
as can be seen in Figure 14. Here we can see that in the first section we have
a summary of the total functions analyzed and the total power consumed. In
section two, we have two graph bars. In both graphs the yy axis represents the
power consumption. The xx axis represents the modules and functions in graph
one and two respectively. Each xx value has 6 series - the 6 series represent the
6 different inputs to which GraphViz was tested.

In this section we presented a case study that analysis a source code of a
regular programming language. Our VDSL, however, can define certifications
for other software artifacts, by composing both simple tools, like for example
HaLeX for reason about regular expressions[6], and complex software systems,
like the GuiSurfer framework to reason about intercatice specfications [7, 8], or
the LRC attribute grammar system [9]. By combining such tools we are able to
define powerful software certifications.

6 Related Work

This works improves on previous ones, related to both the construction of a
language for process management and the implementation of a web portal to
certify software. In [2] we present a textual language for process management.
This language is based on the functional language Haskell and uses zipper-based
techniques, as the ones found in [10] to develops attribute grammar techniques
to defines semantic analysis on the language [11]. Because we express our VDSL

5 http://gcc.gnu.org



14 Tiago Carção, Pedro Martins

in an AG setting, we get for free well-kown techniques to analise and optimize
our visual programs/specifications, namely the detection of circularities [12],
the optimization of such circularities [13–16], and the incremental execution
of our programs [17]. In [1] and [18] we presented the portal and develop a
framework that allows not only the certifications and analysis of open source
software, but we also introduce novel language-independent techniques to further
aid generating information about computer programs submitted to our portal.

There are works on languages for process management. Of relevant reference
is [19], an implementation of the orchestration language Orc [20] is introduced as
an embedded domain specific language in Haskell. In this work, Orc was realized
as a combinator library using the lightweight threads and the communication
and synchronization primitives of the Concurrent Haskell library [21].

7 Conclusions and Future Work

In this paper we presented a visual language that allows the creation of software
certifications in the CROSS web portal. This language enables the user to cre-
ate certifications to analyze software without needing to deal with the typical
disadvantages of an embedded DSL.

For this visual language we created different visual elements and implemented
the notion of sequential and parallel flows of information. We also worked on the
validation associated with the construction of certifications. We also present a
full example through a case study which analyzes energy consumption on a open
source tool, GraphViz. We show how this certification can be implemented in our
visual language and the type of results we can produce with our environment.

As a future work, we intend to extend the visual language to also allow reports
generation and customization, by allowing specific results to be agglomerated
into chapter, sections and subsections of the report.

References

1. Martins, P., Fernandes, J.P., Saraiva, J.: A Web Portal for the Certification of
Open Source Software. In Cerone, A., et al., eds.: SEFM Satellite Events. Volume
7991 of Lecture Notes in Computer Science., Springer (2012) 244–260

2. Martins, P., Fernandes, J.P., Saraiva, J.: A purely functional combinator language
for software quality assessment. In: Symposium on Languages, Applications and
Technologies (SLATE ’12). Volume 21 of OASICS., Schloss Dagstuhl (2012) 51–69

3. Carção, T.: Spectrum-based Energy Leak Localization. Master’s thesis, University
of Minho, Portugal (2014, in preparation)

4. Abreu, R., Zoeteweij, P., van Gemund, A.: On the accuracy of spectrum-based fault
localization. In: Proceedings of the Testing: Academic and Industrial Conference
Practice and Research Techniques – Mutation (Mutation’07). (2007) 89–98

5. Janssen, T., Abreu, R., van Gemund, A.J.: Zoltar: A spectrum-based fault lo-
calization tool. In: Proceedings of the 2009 ESEC/FSE Workshop on Software
Integration and Evolution @ Runtime. SINTER ’09, ACM (2009) 23–30



A Visual DSL for the Certification of Open Source Software 15

6. Saraiva, J.: HaLeX: A Haskell Library to Model, Manipulate and Animate Regular
Languages. In: ACM Workshop on Functional and Declarative Programming in
Education. University of Kiel - TR 0210 (September 2002) 133–140

7. Silva, J.C., Saraiva, J., Campos, J.C.: A generic library for gui reasoning and
testing. In: Proceedings of the 2009 ACM Symposium on Applied Computing.
SAC ’09, New York, NY, USA, ACM (2009) 121–128

8. Silva, J.C., Silva, C., Gonçalo, R.D., Saraiva, J., Campos, J.C.: The guisurfer
tool: Towards a language independent approach to reverse engineering gui code.
In: Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. EICS ’10, New York, NY, USA, ACM (2010) 181–186

9. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In Koskimies, K., ed.: 7th International Conference on Compiler Construc-
tion (CC/ETAPS). Volume 1383 of LNCS., Springer-Verlag (1998) 298–301

10. Martins, P., Fernandes, J.P., Saraiva, J.: Zipper-based attribute grammars and
their extensions. In: Procs. of Brazilian Conference on Programming Languages
(SBLP). Number 8129 in LNCS, Springer-Verlag (2013) 135–149

11. Swierstra, S.D., Alcocer, P.R.A., Saraiva, J.: Designing and implementing combi-
nator languages. Lecture Notes in Computer Science 1608 (1999) 150–206

12. Kastens, U.: Ordered attribute grammars. Acta Informatica 13 (1980) 229–256
13. Saraiva, J., Swierstra, D.: Data Structure Free Compilation. In Stefan Jähnichen,

ed.: 8th International Conference on Compiler Construction, CC/ETAPS’99. Vol-
ume 1575 of LNCS., Springer-Verlag (March 1999) 1–16

14. Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model and Manipulate Circular
Programs. In: PEPM’07: Proceedings of the ACM SIGPLAN 2007 Symposium on
Partial Evaluation and Program Manipulation, ACM Press (2007) 102–111

15. Pardo, A., Fernandes, J.P., Saraiva, J.: Shortcut fusion rules for the derivation
of circular and higher-order programs. Higher-Order and Symbolic Computation
(2011) Springer, 1–35

16. Fernandes, J.P., Pardo, A., Saraiva, J.: A shortcut fusion rule for circular program
calculation. In: ACM SIGPLAN Haskell Workshop. Haskell’07, New York, NY,
USA, ACM (2007) 95–106

17. Saraiva, J., Swierstra, S.D., Kuiper, M.F.: Functional incremental attribute evalu-
ation. In Watt, D.A., ed.: 9th International Conference on Compiler Construction,
CC/ETAPS’00. Volume 1781 of LNCS., Springer (2000) 279–294

18. Martins, P., Carvalho, N., Fernandes, J., Almeida, J., Saraiva, J.: A framework for
modular and customizable software analysis. In: Proc. of Computational Science
and Its Applications ICCSA 2013. Volume 7972 of LNCS. Springer (2013) 443–458

19. Campos, M., Barbosa, L.: Implementation of an orchestration language as a haskell
domain specific language. Elect. Notes Theor. Comput. Sci. 255 (2009) 45–64

20. Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In:
Proc. of Joint Conf. FMOODS/FORTE ’09, Springer (2009) 1–25

21. Peyton Jones, S., Gordon, A., Finne, S.: Concurrent haskell. In: 23rd Symposium
on Principles of programming languages. POPL ’96, ACM (1996) 295–308



16 Tiago Carção, Pedro Martins

Fig. 14: The report generated in the certification for GraphViz


