154 research outputs found

    A reflexão como um instrumento de formação no PFCM

    Get PDF
    O Programa de Formação Contínua em Matemática para Professores dos 1.º e 2.º Ciclos do Ensino Básico (PFCM), com o objectivo de melhorar o ensino e as aprendizagens em Matemática e desenvolver atitudes mais positivas face a esta área do saber, pretende responder às necessidades dos professores participantes, partindo de questões relativas à concretização do currículo de Matemática na sala de aula e tendo um carácter continuado ao longo do ano lectivo. O PFCM constitui, assim, um instrumento de apoio e ajuda aos professores participantes na sua prática lectiva (planificação do trabalho, condução da aula, reflexão sobre o que foi feito) de modo a melhorar as suas actuações profissionais e, consequentemente, as aprendizagens matemáticas dos seus alunos. No anterior ano lectivo, o plano de formação desenvolvido pela Escola Superior de Educação de Bragança (ESEB), embora possibilitasse a abordagem de qualquer conteúdo de formação previsto, centrou-se em alguns domínios, nomeadamente, na clarificação ou aprofundamento de temas matemáticos, na discussão dos tipos e natureza das tarefas (exercícios, explorações, problemas, investigações; jogos, projectos), em aspectos da comunicação matemática, na utilização de materiais curriculares, e na construção dos portefólios, valorizando os registos escritos e reflexão. Nesta comunicação pretendemos discutir, com base na observação participante e na análise documental, situações e episódios ocorridos nas salas de aula que fundamentem aspectos do ensino e aprendizagem da Matemática destacados pelo plano de formação da ESEB e evidenciados quer pelos formadores quer pelos professores participantes, dando especial relevância à reflexão (pessoal e partilhada) sobre as experiências profissionais

    Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease

    Get PDF
    Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer's disease, but the functional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal aging, we tested the hypothesis that higher segregation of the brain's connectome into distinct functional networks represents a functional mechanism underlying cognitive resilience in Alzheimer's disease. Using resting-state functional MRI, we assessed both resting-state-fMRI global system segregation, i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as predictors of cognitive resilience. We performed all analyses in two independent samples for validation: First, we included 108 individuals with autosomal dominantly inherited Alzheimer's disease and 71 non-carrier controls. Second, we included 156 amyloid-PET positive subjects across the spectrum of sporadic Alzheimer's disease as well as 184 amyloid-negative controls. In the autosomal dominant Alzheimer's disease sample, disease severity was assessed by estimated years from symptom onset. In the sporadic Alzheimer's sample, disease stage was assessed by temporal-lobe tau-PET (i.e. composite across Braak stage I & III regions). In both samples, we tested whether the effect of disease severity on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant Alzheimer's disease, we found higher fMRI-assessed system segregation to be associated with an attenuated effect of estimated years from symptom onset on global cognition (p = 0.007). Similarly, for sporadic Alzheimer's disease patients, higher fMRI-assessed system segregation was associated with less decrement in global cognition (p = 0.001) and episodic memory (p = 0.004) per unit increase of temporal lobe tau-PET. Confirmatory analyses using the alternate index of modularity Q revealed consistent results. In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive resilience in Alzheimer's disease

    Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates.

    Get PDF
    BACKGROUND: 21 million pregnant women worldwide (18%) are estimated to carry Group B Streptococcus (GBS), which is a risk for invasive disease in newborns, pregnant women, and stillbirths. Adults ≥ 60 years or with underlying health conditions are also vulnerable to invasive GBS disease. We undertook systematic reviews on GBS organism characteristics including: capsular polysaccharide (serotype), sequence type (multi-locus sequence types (MLST)), and virulence proteins. We synthesised data by at-risk populations, to inform vaccine development. METHODS: We conducted systematic reviews and meta-analyses to estimate proportions of GBS serotypes for at risk populations: maternal colonisation, invasive disease in pregnant women, stillbirths, infants 0-90 days age, and older adults (≥60 years). We considered regional variation and time trends (2001-2018). For these at-risk population groups, we summarised reported MLST and surface proteins. RESULTS: Based on 198 studies (29247isolates), 93-99% of GBS isolates were serotypes Ia, Ib, II, III, IV and V. Regional variation is likely, but data gaps are apparent, even for maternal colonisation which has most data. Serotype III dominates for infant invasive disease (60%) and GBS-associated stillbirths (41%). ST17 accounted for a high proportion of infant invasive disease (41%; 95%CI: 35-47) and was found almost exclusively in serotype III strains, less present in maternal colonisation (9%; 95%CI:6-13),(4%; 95%CI:0-11) infant colonisation, and adult invasive disease (4%, 95%CI:2-6). Percentages of strains with at least one of alp 1, alp2/3, alpha C or Rib surface protein targets were 87% of maternal colonisation, 97% infant colonisation, 93% infant disease and 99% adult invasive disease. At least one of three pilus islands proteins were reported in all strains. DISCUSSION: A hexavalent vaccine (serotypes Ia, Ib, II, III, IV and V) might provide comprehensive cover for all at-risk populations. Surveillance of circulating, disease-causing target proteins is useful to inform vaccines not targeting capsular polysaccharide. Addressing data gaps especially by world region and some at-risk populations (notably stillbirths) is fundamental to evidence-based decision-making during vaccine design

    The impact of transposable element activity on therapeutically relevant human stem cells

    Get PDF
    Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapiesS.R.H. and P.T.R. are funded by the Government of Spain (MINECO, RYC-2016- 21395 and SAF2015–71589-P [S.R.H.]; PEJ-2014-A-31985 and SAF2015–71589- P [P.T.R.]). GGS is supported by a grant from the Ministry of Health of the Federal Republic of Germany (FKZ2518FSB403)

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data
    corecore