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Abstract—The use of machine learning in embedded systems
is an interesting topic, especially with the growth in popularity of
the Internet of Things (IoT). The capacity of a system, such as a
robot, to self-localize, is a fundamental skill for its navigation and
decision-making processes. This work focuses on the feasibility of
using machine learning in a Raspberry Pi 4 Model B, solving the
localization problem using images and fiducial markers (ArUco
markers) in the context of the RobotAtFactory 4.0 competition.
The approaches were validated using a realistically simulated
scenario. Three algorithms were tested, and all were shown to
be a good solution for a limited amount of data. Results also
show that when the amount of data grows, only Multi-Layer
Perception (MLP) is feasible for the embedded application due
to the required training time and the resulting size of the model.

Index Terms—Indoor Localization; Machine Learning; Robo-
tAtFactory 4.0; Robotics Competitions; Embedded systems

I. INTRODUCTION

An efficient Autonomous Mobile Robot (AMR) has a
combination of several features, and each one of them has
a different role. One of the most essential competencies is
the capacity to locate itself in the environment because it is
a prerequisite for making decisions about the future [1]. In
the robotics context, localization means the estimate of the
pose (composed of the position and orientation) according to
a reference frame. There are some approaches to solving the
localization problem in general contexts, such as the Global
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Positioning System (GPS). But due to limitations, it may not
be available in indoor environments [2]. In this context, several
approaches have been developed, and the use of artificial
intelligence (AI) techniques is an example of this approach [3].

As previously mentioned, the use of localization is one of
the most fundamental principles in several contexts, such as
in robotic competitions. One of them is the RobotAtFactory
4.0 (RaF), where an AMR has to move boxes through a model
of a warehouse, and is allowed to communicate only with the
competition server. The goal is to move as many boxes as
possible in the shortest time. This competition simulates an
automated factory, where some materials have to be passed
through several processes in different places inside the envi-
ronment. At this competition, the AMR can use whichever
means is necessary to locate itself as long as it complies with
the competition rules.

One of the current approaches to solve the localization
problem in this competition is using the markers placed on
the environment (ArUcos markers). Using the stored data
about the ArUcos’ pose and their relative position with the
camera’s reference frame, the approach uses a mix of computer
vision, analytical geometry, and stochastic filters to estimate
the robot’s pose [4]. Furthermore, with different estimations
and aggregating these with a filter (such as an Extend Kalman
Filter), the approach can obtain a good estimate of the robot’s
pose amongst noise and error. One issue with this approach is
the dependency on the prior knowledge of the exact pose of
the ArUcos because a small error in this data can lead to a
huge estimate error.

Artificial Intelligence techniques can be applied to tackle theArticle submitted to IEEE



above-mentioned problem [5]. However, the implementation of
AI, especially machine learning (ML), in embedded systems
can be a challenge due to the limited computational resources
normally available in embedded systems. An interesting work
about the use of some ML techniques was done in [6], where
some algorithms were tested on a Raspberry Pi 3 Model B
and their performance was measured.

In this context, this work proposes a case study of the work
done in [6], but focuses on the localization problem of RaF
competition. The idea is to assess and validate the capacity for
training and execution of ML techniques by a Raspberry Pi
4 Model B for the localization problem, considering response
time, energy efficiency, and model size. Optimization of the
algorithms is out of the scope of the present work. All data
used in this work was obtained from a realistic simulator,
based on a simulation of the real field of the competition [7],
[8].

The remaining work is divided into four sections: Section II
presents the related works; Section III describes how this
work was developed; Section IV presents the results and the
discussions; Finally, Section V presents the conclusion about
the work.

II. RELATED WORK

The localization problem is a common topic, which has been
discussed for a long time. There are several approaches to
solve this problem, and in outdoor scenarios, the most common
approach is the Global Positioning System (GPS). But this
approach fails indoors because of physical limitations [2], and
in this way, other solutions are needed. Then, some approaches
to solving indoor localization were developed.

One of these approaches is the Kalman Filter (KF), which
is a mathematical approach that works by combining mea-
surements of a system with predictions of how the system is
expected to behave [9]. It works even if the measurements are
noisy or incomplete. Kalman Filter is used in linear situations,
however, most of the situations are not linear. In this way,
some variants of the KF were developed to work in non-linear
situations, such as the Extended Kalman Filter (EKF) [10].

Another interesting approach is the Markov Localiza-
tion [11], which works as a probabilistic algorithm, which
means the approach keeps a probability distribution over the
space of all such hypotheses, and not only one hypothesis
about the robot’s localization. A further interesting approach is
Monte Carlo Localization [12], which is a kind of Particle Fil-
ter, and it uses multiple samples (called particles) to represent
a hypothesis of the interest variable, the robot’s localization.

Other approaches for this problem are the map-matching
algorithms, such as Perfect Match [13], Iterative Clos-
est Point (ICP) [14], and Normal Distributions Trans-
form (NDT) [15]. A comparison between these approaches
was done in [16].

Furthermore, ML techniques were also used to try to solve
this problem, using approaches like Random Forest (RF), Sup-
port Vector Machines (SVM), K-Nearest Neighbors (KNN),
and Artificial Neural Networks (ANN) [3].

Another common technique used to help in localization is
using landmarks in the environments, especially the fiducial
markers [17]. There are several kinds of them, such as ARTag,
AprilTag, ArUco, and STag [17]. They differ from each other
in the way in which each of them is built. Figure 1 presents a
comparison between these four types. On the RaF competition,
the fiducial marker used is ArUco [4].

Fig. 1. Comparison between fiducial markers 1 [18].

The use of fiducial markers for localization is also used
in the RaF competition. In the proposal done in [4], each
ArUco identified in an image has the relative position with the
camera calculated, and with these values and the knowledge
of ArUco’s pose in a global reference frame, an estimation
of the robot’s pose is calculated using analytical geometry.
Furthermore, to aggregate all the estimations some stochastic
filters are used, such as EKF and Mahalanobis Filter, aiming
to improve the quality of the estimations.

The problem with such an analytical approach to the local-
ization problem in this context is the necessity to know the
exact pose of each ArUco, which can be a problem to obtain in
hostile environments. In this way, a ML approach is proposed
to solve the problem, where the previous knowledge of the
ArUcos’s pose is not relevant. This was explored in [5].

With the advancement of the Internet of Things (IoT),
the use of AI in embedded systems is becoming a common
approach. A study about the embedded ML was made in [19],
exploring several platforms and ML libraries, and their effi-
ciency.

The use of ML in a Raspberry PI 3 Model B was explored
in [6], where the authors used three different approaches: RF,
Multi-layer Perceptron (MLP), and SVM. These techniques
were validated in regression and classification problems. The
authors discussed the training and response time, the energy
consumption, and a comparison between the approaches in
terms of accuracy. In that, the authors conclude that all of
the algorithms achieved a good accuracy (exceeded 80%),
with inference time below one-millisecond and, according to
the authors, moderately low energy consumption compared
with other types of activities, such as browsing the web and
watching videos. However, the authors didn’t discuss the size
of the models.

1STag: https://github.com/bbenligiray/stag, ARTag: https://shawnlehner.
github.io/ARMaker/, ArUco: https://chev.me/arucogen/ and AprilTag: https:
//github.com/AprilRobotics/apriltag
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III. MATERIALS AND METHODS

A. Context Description

RobotAtFactory 4.0 is a competition in which autonomous
robots move boxes from one place to another, similar to
what happens in current factories. Robots that participate
in this competition are subjected to several rules, such as
being completely autonomous and cannot have any kind of
communication with any external system that is not explicitly
provided by the organization. Furthermore, the robot must fit
into a cube of 30 × 30 × 30 cm. Some of the components
of the robot are micro-controllers, an RGB camera (placed
on the top front of the robot), motors, and other sensors and
actuators [4].

Raspberry Pi is a single-board microcomputer available in
several versions. In this work, version 4 model B was used, and
Figure 2 presents a photograph of it. This version has 4 GB
RAM, 40 pins, and Broadcom BCM2711, Quad-core Cortex-
A72 (ARM v8) 64-bit SoC @ 1.5GHz2. The operating system
used was the Raspberry PI OS3 (previously called Raspbian),
which is a 32-bits operational system, open-source software,
based on Debian, and optimized for Raspberry Pi hardware.

Fig. 2. Raspberry 4 Pi Model B was used for the experiments.

A simulation scene was developed in the SimTwo simulator
by the competition’s organizer4. Thus, the simulator scenario
follows the specifications of the official competition rules. The
simulator has several features for the users, such as a code
editor, which makes it possible to program a specific route by
the robot. It works with rigid-body dynamics interactions and
constraints [8]. Figure 3 presents the simulator that displays
the virtual representation of the RaF competition field.

Furthermore, the robot in the simulator is based on a real
robot and it has an onboard camera. Figure 4 presents an
image captured by the robot’s camera in the simulator. Each
image collected by the simulator has an associated pose {x, y,
θ}, where x and y are in meters and θ, which is the robot’s

2More details in:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

3https://www.raspberrypi.com/software/
4Available at: https://github.com/P33a/SimTwo

Fig. 3. Simulation scene that displays the robot and the competition’s
simulated environment.

orientation, in degrees. For instance, the pose {-0.008, 0.116,
125.65} is associated with Figure 4.

Fig. 4. Example of an image taken by the robot’s camera in simulation.

B. Methodology

A sequence of four steps was followed to do the complete
work. First, it was necessary to collect the data from the
simulator, followed by data preprocessing, training models,
and model evaluation. Figure 5 depicts the flowchart of the
process, presenting the steps, the software used, and the place
where it was executed (computer or Raspberry Pi). This
process is similar to that done in [5], but here the process is
executed in an embedded system, not in a computer. Besides
this, it is important to highlight the Python version used was
3.9.2, the Pandas library was 1.5.3, the OpenCV library was
4.5.1, and the scikit-learn library was 1.2.1.

1) Data Collection: Since all images come from a simu-
lated scenario, the simulator was executed in an external device
to collect data and later, it was transferred to the Raspberry Pi.
Two adjustments were made in the standard simulator settings,
aiming to avoid problems that are not relevant to this work.
The first modification was about the illumination, which was
replaced to avoid dark parts on the field. The second was
changing the color of the walls, changing from blue to white

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
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Fig. 5. Flowchart of the process. The first step is data collection, followed
by data processing, model definition and training, and model evaluation.

(because the OpenCV library5, used to identify the fiducial
markers, works better when the edges are white).

To collect the data in the simulator, the field was discretized
in a grid with a 1 cm resolution. Thus, the robot was placed
in all possible positions in this grid, i.e., squares without
obstacles. For each position, the robot performed a 360° turn
and took around 60 pictures per loop, in order to create
a database. This way, around 350 thousand images were
collected, with each image having an associated pose. This is
a large number of images, occupying about 7 GB of memory.
Since the idea of this work is only to validate the feasibility of
the ML in the localization problem at RaF competition, only
images from a part of the field were used: a square with size
10x10 cm in the center of the field, totaling around 8 thousand
images. This restriction aimed to reduce the number of images
since one of the goals is training the models inside of the
Raspberry Pi. Furthermore, the quantity of images depends
on the grid’s resolution and can vary drastically. Finally, the
data collected was divided into 85% of the images for the
training set and 15% for the test set.

2) Data Preprocessing: The preprocessing process consists
of extracting the information about the ArUcos in each image
and aggregating all these data to create the datasets that will
be used for the ML models. To do this, the OpenCV library
was used. Given an image, this library is able to recognize the
present ArUcos and return the ID of the tag and arrays with the
position and orientation, called tvec and rvec respectively. The
tvec array is in the unit metric used in the camera’s parameters
(meters, centimeters, etc) and rvec is in axis-angle format.
Each of these arrays contains 3 elements, where each one
corresponds to one axis (x, y, z). So, to create the dataset, each

5https://docs.opencv.org/4.x/d5/dae/tutorial aruco detection.html

tag identified (it can identify more than one tag per image)
will be an observation in the dataset, with 7 features (id, rvec
and tvec) and with 3 targets (x, y and θ, which are associated
with the image that the ArUco was identified). This process
was done for the two datasets, i.e., training and testing sets.
Furthermore, it is important to highlight that the preprocessing
does not necessarily have to be done in the Raspberry Pi, but
could be executed in a more powerful computer. However, we
chose to execute the training in the Raspberry Pi to investigate
if the system could be trained and executed in the same
hardware, which makes it independent. In addition, in [6] the
authors realized the model training in the Raspberry Pi, which
gave us an indication that the same procedure could be done
for our case.

3) Model definition: Three algorithms were used, such as
the work done in [6]: MLP, SVM, and Random Forest. The
scikit-learn library was used to implement these models. The
methods used were:

• For Random Forest: RandomForestRegressor6

• For MLP: MLPRegressor7

• For SVM: SVR8

Since the objective is to only validate the performance,
no modification was made to the hyper-parameters, i.e., the
standard values defined in the scikit-learn library were used.
Besides this, since the target is composed of three independent
values, one model was created for each target. This means, in
total, 9 models were created: three Random Forest, one to
x, one to y, and another to θ, and the same way to other
algorithms. This division was made because once the three
targets are uncorrelated between them, creating a specific
model for each one can improve the quality of the predictions.

4) Model Evaluation: To evaluate the accuracy of the mod-
els, the metric used was the Mean Absolute Error (MAE) [20].
This metric is given by the following equation:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (1)

where yi represents the true value, the ŷi represents the
predicted value for the instance i and n the number of
predictions. The best value for MAE is 0, which indicates
a perfect estimation. To evaluate the feasibility of the models,
the metrics used were: training and execution time; quantity
of energy used in Watt-hour (Wh), and the sizes of the models
after training. To measure the energy, an Atorch USB Tester
was used, and Figure 6 presents a picture of it.

IV. RESULTS AND DISCUSSIONS

The first result to show is about the preprocess performance.
To preprocess the data to train was necessary 157.49 seconds
and consumed 180 Wh, while to preprocess the data to test,
28.62 seconds and 35 Wh.

6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

7https://scikit-learn.org/stable/modules/generated/sklearn.neural network.
MLPRegressor.html

8https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html


Fig. 6. An Atorch USB Tester was used to measure the energy consumption
of running ML algorithms on the Raspberry Pi 4 Model B.

The second result is about the time spent by the models to
train and execute the tests. Figure 7 shows this comparison,
where each color represents one model and the values are in
seconds. Furthermore, Figure 8 presents a comparison between
the energy consumption by each model in the training and
execution process, where again each color represent one model
and the values are in Wh. The execution process was done
considering the pose estimation for 1248 images, so in the
graph, the label used for the execution is Inference of 1248
images.
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Fig. 7. Training and testing time for the three ML approaches. The time to
pre-process data was not included in these results.

The next result is about the quality of the models, i.e., the
errors between the estimated values and the ground truth, and
their physical sizes. Table I presents these comparisons, where
the MAE presents their respective errors with x and y in meters
and θ is in degrees. The model size columns present the sizes
of each model, measured in kB (kilobytes).

Analyzing Figure 7, it is possible to notice that the SVM
algorithm used more time to train and execute than the others.
MLP was the fastest approach, even in the training and in
the execution. The same happens with energy consumption,
where SVM used more energy when compared with the others,
and MLP, again, was the best approach. The response time

Consumption [Wh]

Training

Inference of 
1248 images

0 100 200 300

RF MLP SVM

Energy consumption comparison

Fig. 8. Energy consumption comparison between the three approaches. The
energy used to pre-process data was not included in these results.

TABLE I
COMPARISONS BETWEEN THE APPROACHES ON ESTIMATION ERROR

(MAE) AND SIZE IN MEMORY.

MAE Model size
x [m] y[m] θ[º] x[kB] y[kB] θ[kB]

RF 0.009 0.012 3.46 138400 147500 180000
MLP 0.029 0.046 28.47 26 26 30
SVM 0.030 0.027 47.64 1 1 2700

during the execution is in order of milliseconds for each image
for MLP and RF, indicating it is possible to use this kind of
approach to make predictions during the competition because
the results indicate that to predict the pose for each image, it
was necessary no more than a couple of milliseconds.

Regarding the quality of the models, the predictions were
not good, obtaining errors in a centimeter scale. In this aspect,
the best approach was RF. But it is important to highlight these
results will be used as observations in stochastic/position/data
fusion filters (such as Extended Kalman and Mahalanobis
Filters), which means that they are not the final results.
Furthermore, the models are not optimized, and only the
standard hyper-parameters were used, which means there is
a margin to improve their quality.

A relevant aspect is the size of the models, presented by
Table I. The SVM presents the models to x and y targets in
a very small size (1kB), but for θ the size was considerably
bigger (2.7MB). On the other hand, the sizes of the MLP
models were consistently small (between 26 and 30kB). RF,
which presented the best results, had the biggest size, around 4
orders of magnitude when compared to the others, with models
achieving 180MB.

The size of the models in the reduced part of the field was
not a problem but indicates that using the whole field, where
more images are necessary, the models will increase, and
consequently, they will become a problem. To prove this point,
using a computer, the same algorithms were trained using the
data from the whole environment. MLP models continue in
a small size, achieving, each one, no more than 1MB. RF



models achieve between 3 and 5GB. This fact indicates that
it is necessary to have at least 9GB of RAM to execute the
complete prediction, which is a considerable quantity when
compared with the Raspberry Pi used in this work, that only
has 4GB available. Finally, the SVM models were not able
to train, because it would take a lot of time. For example, to
train the SVM model to x target, it would be necessary more
than 72 hours.

V. CONCLUSIONS

This work aimed to validate the feasibility of ML algorithms
in an embedded system focused on the localization problem
of the RobotAtFactory 4.0 competition. A simulated scenario
was used to execute the tests and collect the results. The
focus of this work was only on the feasibility of the models
rather than the quality of the estimations by models. The
results from Section IV showed that the three approaches were
feasible to solve the localization problem in a Raspberry Pi 4
model B if the problem is considerably small, i.e., the data
is manageable. Therefore, there is a practical limit for the
number of images used in training, resulting in a limitation
on the grid’s resolution, which impacts estimation accuracy.
However, if the grid’s resolution is significant, such as 1cm or
less, only the MLP can be executed, and the training should
not be executed in the Raspberry Pi.

Another interesting point is about the energy consumption,
where MLP was the algorithm that had the lowest consump-
tion, while the SVM had an order of magnitude higher than
the MLP. Despite the position estimation error being in the
order of centimeters, there is still a margin to improve the
quality of the models by optimizing their hyper-parameters.
Furthermore, after this improvement, it is possible to use
filters to aggregate different predictions and improve the final
pose prediction. Since the focus of this paper is only on
the execution performance and the feasibility of the models,
the improvement of the accuracy and the precision were not
treated.

In future work, we plan to optimize the model’s quality,
i.e., equalize the errors before the performance comparison
and test other ML techniques. In addition, we intend to
implement the whole localization system, with the filters,
and implement this system in a real environment (doing the
necessary adjustments, such as retraining the models), where
the robot has to take the pictures, process, and make the
prediction while performing other tasks.
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