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Segregation of functional networks is associated with cognitive resilience in Alzheimer’s 

disease. 
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ABSTRACT 

Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer’s 

disease, but the functional brain mechanisms that support cognitive resilience remain elusive. 

Given previous findings in normal aging, we tested the hypothesis that higher segregation of 

the brain’s connectome into distinct functional networks represents a functional mechanism 

underlying cognitive resilience in Alzheimer’s disease. Using resting-state functional MRI, we 

assessed both resting-state-fMRI global system segregation, i.e. the balance of between-

network to within-network connectivity, and the alternate index of modularity Q as predictors 

of cognitive resilience. We included two independent samples for validation, including i) 108 

individuals with autosomal dominantly inherited Alzheimer’s disease and 71 non-carrier 

controls and ii) 156 amyloid-PET positive subjects across the spectrum of sporadic Alzheimer’s 

disease as well as 184 amyloid-negative controls. In the autosomal dominant Alzheimer’s 

disease sample, disease severity was assessed by estimated years from symptom onset. In the 

sporadic Alzheimer’s sample, disease stage was assessed by temporal-lobe tau-PET (i.e. Braak 

stage I & III regions). In both samples, we tested whether the effect of disease severity on 

cognition was attenuated at higher levels of functional network segregation. For autosomal 

dominant Alzheimer’s disease, we found higher fMRI-assessed system segregation to be 

associated with an attenuated effect of estimated years from symptom onset on global cognition 

(p=0.007). Similarly, for sporadic Alzheimer’s disease patients, higher fMRI-assessed system 

segregation was associated with less decrement in global cognition (p = 0.001) and episodic 

memory (p=0.004) per unit increase of tau-PET. Confirmatory analyses using the alternate 

index of modularity Q revealed consistent results. In conclusion, higher segregation of 

functional connections into distinct large-scale networks supports cognitive resilience in 

Alzheimer’s disease.  
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INTRODUCTION  

Cognitive resilience (CR) is defined as the ability to maintain cognitive abilities relatively well 

in the presence of age-related brain decline or brain pathologies (Cabeza et al., 2018; Stern et 

al., 2018a). In Alzheimer’s disease (AD), the level of cognitive impairment shows substantial 

variability even when accounting for key pathologies including beta-amyloid (Ab) and 

pathologic tau (Jack et al., 2013; Franzmeier et al., 2020). Protective environmental factors 

such as education, mid-life activities and physical activity have been found to be associated 

with lower cognitive impairment and dementia risk in AD (Wang et al., 2017; Chan et al., 

2018a; Dekhtyar et al., 2019), suggesting that CR may modulate the impact of pathology on 

cognition. However, the functional brain properties underlying CR remain elusive. Answering 

that question may help identify and target brain mechanisms that slow down cognitive decline 

in the presence of AD pathology. Enhancing CR to delay the onset of dementia as much as by 

one year would translate into an age-dependent decrease in dementia prevalence of over 10% 

(Zissimopoulos et al., 2014). 

Previous neuroimaging studies have reported several brain features associated with CR in AD 

(Ewers, 2020), including higher functional connectivity of hubs in the cognitive control and 

salience network (Benson et al., 2018; Franzmeier et al., 2018a; Neitzel et al., 2019b) or higher 

glucose metabolism and brain activation of the anterior cingulate and temporal cortex (Stern et 

al., 2018b; Arenaza-Urquijo et al., 2019; van Loenhoud et al., 2020). These findings provide 

valuable insight into particular brain regions contributing to CR in AD, but overall those 

regional findings are diverse and variable across studies (Ewers, 2020). There is currently a 

lack of understanding of which differences in the global functional brain topology support CR. 

From a clinical point of view, a single easily accessible measure of global brain function linked 

to CR would be attractive as a mechanistic functional marker of CR (Medaglia et al., 2017). 

Here we propose resting-state-fMRI assessed segregation between functional networks (called 

systems) as a putative neural substrate of CR. The brain is composed of intrinsically wired 
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functional networks (Smith et al., 2009; Crossley et al., 2013), where each network corresponds 

to a set of tightly connected regions (Smith et al., 2009; Cole et al., 2014). Such a modular 

functional organization of the brain in the form of clearly segregated functional networks is 

critical feature of the functional connectome underlying cognitive performance (Achard et al., 

2006; Bullmore and Sporns, 2012; Sporns and Betzel, 2016). Multiple graph theoretical indices 

have been proposed to quantify the segregation of networks (Sporns, 2018). Here, we focus on 

the statistic system segregation (SyS) which quantifies the extent to which major functional 

networks are segregated from each other (i.e. high within-network but low between-network 

connectivity)(Chan et al., 2014). An alternative index is the modularity statistic Q, which 

quantifies extent the clustering of connections into networks from that expected in a randomly 

connected brain (Sporns and Betzel, 2016). We chose SyS as our primary predictor, given that 

SyS is best suited to quantify the segregation between pre-defined major resting state networks 

and thus allows for a clear reference to previously well characterized functional networks (Wig, 

2017). Results from resting-state fMRI studies showed that higher SyS was associated with 

higher global cognitive performance across the adult life span (Chan et al., 2014; Varangis et 

al., 2019). Few studies have assessed SyS in relation to CR. The proxy measure of CR including 

higher socioeconomic status (Marden et al., 2017; Chapko et al., 2018) was previously found 

to be associated with higher SyS in normal aging (Chan et al., 2018b), and in persons with brain 

injury, higher SyS was associated with better post-recovery cognitive performance (Arnemann 

et al., 2015), suggesting higher resilience to the impact of brain pathology on cognitive 

function. Despite these previous findings, to our knowledge no study has yet assessed SyS as a 

substrate of CR in AD. Here we tested whether higher resting-state fMRI-assessed SyS 

attenuates the association between markers of AD severity and cognitive decline in two 

different samples of individuals with genetic or biomarker evidence of AD. In order to enhance 

criterion validity of our analyses, we also tested the alternate modularity index Q as a predictor 

of CR.  
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METHODS 

Participants  

Dominantly Inherited Alzheimer Network (DIAN) 

108 carriers of autosomal dominant AD (ADAD) disease-causing mutations in genes PSEN1, 

and PSEN2 or APP, and 71 non-carrier siblings were included from DIAN data freeze 10 

(Moulder et al., 2013). Beyond DIAN inclusion criteria, the current study required availability 

of 3T resting-state fMRI, T1-structural MRI and cognitive assessments. No selection bias (i.e. 

demographic differences between the included participants and excluded participants) were 

found (p>0.05) for age, gender or education. As a proxy of AD disease severity, we applied the 

estimated years from symptom onset (EYO), defined as the difference between a participants 

age at examination and the parental age of symptom onset for ADAD mutation carriers, as 

described previously (Bateman et al., 2012; Suarez-Calvet et al., 2016; Franzmeier et al., 

2018b). We did not use biomarker levels of pathologic tau (as we did in ADNI, see below), 

since neither cerebrospinal fluid biomarkers of tau nor tau PET were available in all subjects in 

DIAN. Each participant provided written informed consent. Local ethical approval was 

obtained at each DIAN site. 

 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) -  

For the evaluation of late onset AD (LOAD), we included data from the 340 participants 

included in ADNI phase 3, which were selected based on availability of T1-weighted and 

resting-state fMRI, 18F-AV1451 tau-PET for the assessment of tau and 18F-AV45 amyloid-PET 

for the assessment of amyloid deposition. All measures had to be obtained at the same study 

visit. Using Freesurfer-derived global amyloid-PET SUVR scores normalized to the whole 

cerebellum (provided by the ADNI-PET Core), all participants were characterized as Ab+ or 

Ab- based on an established cut-point (global AV45 SUVR > 1.11) (Landau et al., 2012). As a 

control group, we included 184 cognitively normal (CN, MMSE>24, CDR=0, non-depressed) 
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Ab- participants. To cover the Alzheimer’s continuum, we included 89 CN-Ab+, 59 mild 

cognitively impaired (MCI) Ab+ participants (MMSE>24, CDR=0.5, objective memory-loss 

on the education adjusted Wechsler Memory Scale II, preserved activities of daily living) and 

8 Ab+ patients with dementia (MMSE<26, CDR>0.5, fulfillment of NINCDS/ADRDA criteria 

for probable AD) (Petersen et al., 2010). Region of interest (ROI)-specific AV1451 tau-PET 

data for Freesurfer-based Desikan-Killiany ROIs provided by the ADNI PET-Core has been 

downloaded from the online ADNI image archive (https://ida.loni.usc.edu). As a proxy of 

disease severity in sporadic AD, tau-PET uptake averaged across Braak-stage ROI I and III was 

assessed according to a previously described protocol (Scholl et al., 2016). We specifically 

focused on these early Braak-stage ROI to enhance sensitivity to tau accumulation during the 

early stages of AD given that in DIAN mutation carriers include also those over 20 years prior 

to estimated symptom onset. We excluded the hippocampus (i.e. Braak-stage-II ROI) due to 

known susceptibility of AV1451 PET PET measures in the hippocampal region to spill-over 

effects of AV1451 binding in the neighboring choroid plexus (Ikonomovic et al., 2016). Ethical 

approval was obtained by the ADNI investigators, all participants provided written informed 

consent.  

 

Neuropsychology 

In DIAN, we used pre-established z-score composite scores of global cognition, which was 

designed by the DIAN cognitive core based on the tests’ low ceiling/floor effects, high face 

validity and sensitivity to early AD, and is included as the primary endpoint in the DIAN 

clinical trial (Bateman et al., 2017). For the assessment of episodic memory, a memory 

composite was generated, which was defined as the average z-score (i.e. normalized the full 

DIAN baseline sample of cognitively normal non-mutation carriers) across all memory scores 

available in DIAN (i.e. Wechsler Memory Scale-Revised, Story A logical memory immediate 

and delayed recall; Immediate and delayed recall of a 16-item word list; and an associative 
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memory test). These tests were chosen due to their sensitivity to changes in early stage ADAD 

subjects (at clinical dementia raging (CDR) score = 0.05) as previously described (Storandt et 

al., 2014). For ADNI participants, we used the total score of the ADAS13 for global cognition 

and the pre-established composite memory score ADNI-MEM (Crane et al., 2012), which are 

widely used composite scores of cognition in ADNI (Weiner et al., 2017) and thus offer high 

comparability between studies. As expected, measures of global cognition and memory were 

correlated within each cohort (DIAN: r=0.81, p<0.001; ADNI: r=-0.85, p<0.001). 

 

MRI acquisition and preprocessing 

In all samples, MRI data was obtained on 3T scanner systems. Structural MRI was obtained in 

both samples using a 3D T1-weighted MPRAGE sequence (ADNI: 1 mm isotropic voxel-size, 

TR = 2300 ms.; DIAN 1.1x1.1x1.2mm voxel-size, TR=2300ms). In ADNI, 200 resting-state 

fMRI volumes were obtained using a T2*-weighted EPI sequence with 3.4 mm isotropic voxel 

resolution with a TR/TE/flip angle = 3000ms/30ms/90°. In DIAN, 140 resting-state fMRI 

volumes were collected also using aT2*-weighted EPI sequence with a TR/TE/flip 

angle=2230ms/30ms/80°. All resting-state fMRI images were preprocessed and spatially 

normalized using the same SPM12-based (Wellcome Trust Centre for Neuroimaging, 

University College London) pipeline using DARTEL as described previously (Franzmeier et 

al., 2017a; Franzmeier et al., 2017b; Franzmeier et al., 2018b). Resting-state fMRI 

preprocessing further included motion correction, detrending, band-pass filtering (0.01-

0.08Hz), nuisance regression (i.e. 6 motion parameters, mean signal extracted from 

cerebrospinal fluid and white matter masks), motion scrubbing and spatial smoothing using an 

8mm full-width at half maximum gaussian kernel. Motion scrubbing followed a pre-established 

approach, where we computed frame-wise displacement between adjacent fMRI volumes. 

Volumes that exceeded a frame-wise displacement threshold >0.5mm were censored (i.e. 

replaced with zero-padded volumes) together with one preceding and two subsequent volumes.  
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No subjects were included for which >30% of the resting-state scan had to be removed during 

motion scrubbing. There were no differences in the average percentage of censored volumes 

(ADNI: 6±11%; DIAN 7±10%) between Ab+ vs. Ab- in ADNI or between mutation carriers 

vs. non-carriers in DIAN (all p>0.05). Note that all above described image processing steps 

were conducted independently in DIAN and ADNI, hence no data was merged between the two 

cohorts during any stage of data processing or analysis.  

 

Assessment of functional connectivity and system segregation (SyS) 

Functional connectivity was estimated in an ROI based manner, using 400 ROIs from the 

Schaefer fMRI atlas (see Figure 1) which covers the neocortex (Schaefer et al., 2017). The 400 

ROIs are grouped within seven large-scale functional networks (Figure 1A) in line with 

previous parcellations (Yeo et al., 2011). Prior to all analyses, the Schaefer fMRI atlas was 

masked with sample-specific grey matter masks (i.e. voxels with at least 30% probability of 

belonging to grey matter within the ADNI or BioFINDER sample), thresholded at a probability 

of 0.3. ROI-to-ROI FC was estimated for each subject based on fully preprocessed fMRI data. 

Specifically, we extracted the mean fMRI timeseries for each of the 400 ROIs by averaging the 

signal across voxels falling within an ROI per volume. Mean ROI timeseries were then cross-

correlated using Pearson-Moment correlation, yielding a 400x400 FC matrix that was 

subsequently Fisher-z transformed, autocorrelations were set to zero and only positive 

connections were retained. System segregation was computed for each of the seven networks 

from a previously established network parcellation (Schaefer et al., 2017) as the difference 

between mean within network FC and mean FC of the network nodes to the remaining six 

networks (i.e. between-network FC), as 

𝑆𝑦𝑆 = 	
𝑧!&&&& −	𝑧"(
𝑧!&&&&
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where 𝑧!&&&& is the mean connectivity of all nodes within a given network and 𝑧"(  is the mean 

connectivity of all nodes of a given network to nodes outside of that network(Chan et al., 2014). 

Global SyS was computed as the mean segregation across all seven networks and used for 

subsequent analyses.  

To ensure that our analyses were not driven by the selection of a particular graph-metric, we 

additionally computed the modularity coefficient Q (Newman, 2004), which is an alternative 

measure to quantify the segregation of brain networks, using the following equation: 

𝑄 =	
1
2𝑚	-.𝐴#$ −	

𝑘#𝑘$
2𝑚 1 𝛿(𝑐# , 𝑐$)

#$

 

Where Aij represents the connectivity between nodes i and j, ki and kj are the sum of the 

connectivity weights attached to nodes i and j, m is the sum of all connectivity weights in the 

graph, ci and cj are the communities of the nodes and d is the Kronecker delta function. SyS and 

Q were highly correlated in both cohorts (DIAN: r=0.9, R2=0.81, p<0.001; ADNI: r=0.86, 

R2=0.74, p<0.001), supporting the notion that both metrics assess the same underlying construct 

of brain network segregation. 

 

Statistics: 

For DIAN, baseline demographic scores were compared between mutation-carriers and non-

carriers using t-tests for continuous and chi2 tests for nominal variables. For the ADNI sample, 

demographics were compared between diagnostic groups using ANOVAs for continuous 

variables and Chi2 for nominal variables. 

In DIAN, we first tested whether higher EYO was associated with worse cognitive performance 

(i.e. global cognitive and memory composite), using linear mixed models controlling for age, 

gender, education (fixed effects), family affiliation and random intercept (random effects). For 

our major hypothesis, we assessed next whether higher SyS attenuated the association between 

advanced EYO and cognitive performance in the ADAD mutation carriers. To this end, we 
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employed linear mixed models to test the interaction between SyS and EYO on cognition (i.e. 

global cognitive and memory composite), again controlling for age, gender, education, mean 

motion (i.e. framewise displacement) during the resting-state fMRI scan (fixed effects), family 

affiliation and random intercept (random effects). For analyses in DIAN, we used a Bonferroni-

corrected alpha threshold of 0.025 (i.e. a=0.05 adjusted for two tests, that is one test on global 

cognition, the other on memory performance). 

In the ADNI tau-PET sample, we used tau-PET in Braak-stage I and III regions as markers of 

early core AD pathology. We preferred tau-PET over amyloid PET as a marker of disease 

progression, given tau-PETs’ superior correlation with neurodegeneration and cognitive decline 

in AD (Brier et al., 2016; La Joie et al., 2020). We first tested whether a higher tau-PET SUVR 

(i.e. Braak I+III composite) was associated with worse cognition (i.e. ADAS13 for global 

cognition and ADNI-MEM for memory performance), using linear mixed models controlling 

for age, gender, education, mean motion (i.e. framewise displacement) during the resting-state 

fMRI scan (fixed effects), study center and random intercept (random effects). Next, we again 

tested our major hypothesis whether higher SyS attenuated the effect of Braak I+III tau-PET 

SUVR on ADAS13/ADNI-MEM (i.e. SyS x Braak I+III tau-PET interaction) using linear 

mixed models controlling for age, gender, education, mean motion (i.e. framewise 

displacement) during the resting-state fMRI scan (fixed effects), study center and random 

intercept (random effects). As in DIAN, we employed a Bonferroni-corrected alpha threshold 

of 0.025, adjusting for two tests. To ensure that the above described analyses were not driven 

by the selection of SyS as a graph metric, we repeated the analyses using the modularity 

coefficient Q (as implemented in the R toolbox phenoClust) as an alternative measure of 

network segregation. All statistical analyses were performed in R statistical software (version 

3.6.1).  
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RESULTS 

Baseline subject characteristics are displayed in table 1. When comparing SyS scores between 

AD groups and controls, there was no difference in SyS between mutation-carriers and the non-

carrier group (F=2.388, p=0.124, Figure 2A) of the DIAN sample. In ADNI, however, we found 

decreased SyS in Ab+ as compared to Ab- participants (F=8.904, p=0.003, Cohen’s d=-0.478, 

Figure 2B).  

 

System segregation attenuates cognitive deficits in familial AD 

As a proxy ADAD disease severity in the DIAN sample, we employed EYO, which is 

associated with performance on measures of both global cognition (b=-0.657, Cohen’s d=-

1.834, p<0.001) and memory (b=-0.590, Cohen’s d=-1.376, p<0.001) as shown by linear mixed 

effects models controlling for age, gender, education (fixed effects) and family affiliation and 

random intercept (random effects). To test our major hypothesis, we determined the interaction 

effect between system segregation and EYO on either global cognition or memory, controlling 

for gender, education, mean motion during the resting-state fMRI scan (i.e. framewise 

displacement; fixed effects), family affiliation and random intercept (random effects). As 

hypothesized, we found a SyS segregation by EYO interaction on global cognition (b=0.209, 

p=0.007, Cohen’s d=0.57, Figure 3A), such that ADAD mutation-carriers with higher SyS had 

better global cognitive performance at a given level of EYO compared to ADAD mutation-

carriers with lower SyS. The interaction effect remained significant after accounting for 

multiple testing. Testing the same interaction effect for memory performance, however, yielded 

non-significant results (b=0.026, p=0.799, Cohen’s d=-0.055, Figure 3B). Using the modularity 

coefficient Q instead of SyS yielded consistent interaction effects with EYO on global cognition 

(b=0.209, p=0.004, Cohen’s d=0.650, Supp. Fig. 1A) but not memory performance (b=0.033, 

p=0.727, Supp. Fig. 1B). Together, the analyses in the DIAN cohort suggest that higher 
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segregation of brain networks is associated with attenuated global cognitive decreases in 

ADAD. 

 

System segregation attenuates the association between tau pathology and cognitive deficits 

in sporadic AD 

We aimed to assess whether beneficial effects of SyS on cognition are evident in the more 

common sporadic form of AD. To this end, we tested in 156 Ab+ ADNI participants whether 

higher SyS was associated with attenuated effects of primary AD pathology on cognition. As a 

measure of primary AD pathology that is strongly linked to cognition, we used a composite tau-

PET SUVR score, summarizing tau-PET levels within Braak-stage specific ROIs 1 & 3. The 

tau-PET composite of Braak-stage ROIs 1&3 was significantly higher in Ab+ than in Ab- 

(F=51.69, p<0.001, Cohen’s d=0.809, ANCOVA controlled for age gender and education) and 

higher tau-PET composite scores were strongly associated with worse global cognition (i.e. 

ADAS13 total score, b=0.26, Cohen’s d=0.613, p<0.001) and memory (i.e. ADNI-MEM, b=-

0.372, Cohen’s d=-0.622, p<0.001) in the Ab+ group (linear mixed models controlling for age, 

gender, education [fixed effects], study center and random intercept [random effects]). 

Analogous to our analyses in DIAN, we then tested the interaction between SyS and the tau-

PET composite on global cognition (i.e. ADAS13 total score) memory (i.e. ADNI-MEM), 

controlling for age, gender, education, diagnosis and mean framewise displacement [fixed 

effects]) as well as study center and random intercept [random effects]. We found significant 

SyS by tau-PET composite interactions on both global cognition (b=-0.268 p<0.001, Cohen’s 

d=-0.569, Figure 3C) and memory performance (b=0.220, p=0.004, Cohen’s d=0.488, Figure 

3D). Both interaction effects remained significant after accounting for multiple testing. As 

shown in Figures 3C and D, higher SyS was associated with less severe global cognitive and 

memory impairment at a given level of tau pathology. Tau-PET was not associated with lower 
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SyS in ADNI Ab+ subjects. Repeating the above described analyses with the modularity 

coefficient (i.e. tau-PET by modularity interaction), yielded consistent results for global 

cognition (b=-0.175, p=0.021, Cohen’s d=-0.393, Supp. Fig. 1C) and memory (b=0.180, 

p=0.015, Cohen’s d=0.413, Supp. Fig. 1D). The modularity index Q was not associated with 

tau PET (p > 0.05). When repeating the analyses in the Ab- group, no significant tau-PET 

composite by SyS or tau-PET composite by modularity interaction effects were found (all 

p>0.05, see Supplementary Figure 2), suggesting that effects were specific for the Ab+ group. 

These findings support the hypothesis that higher segregation of brain networks supports higher 

cognitive performance in the face of AD pathology.  
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Discussion 

We found that higher resting-state fMRI-assessed SyS was associated with attenuated cognitive 

deficits in autosomal dominant AD and sporadic AD, such that higher SyS predicted a lower 

impact of disease progression markers (including EYO and tau PET) on cognitive performance. 

All findings were replicated with the modularity coefficient Q, i.e. an alternative graph metric 

for segregation between brain networks. Although our findings do not imply that the 

segregation of brain networks has a causative effect, these results strongly support a protective 

role of SyS on cognitive changes during the course of AD.   

SyS was associated with altered effect of core AD progression markers on cognition, providing 

the first evidence that higher SyS is not only associated with higher cognition in normal aging 

shown previously (Chan et al., 2014; Varangis et al., 2019), but also with higher CR in AD. 

We found the same pattern of results when using the alternate index of modularity Q. Although 

computationally different, both indices are conceptually closely related by quantifying the 

extent to which functional connections segregate into densely connected networks (Wig, 2017). 

Thus, across different graph theoretical indices, we found that higher segregation of networks 

is associated with enhanced CR. We validated our findings across different cohorts including 

autosomal dominant AD and sporadic AD. ADAD provides a unique opportunity to study CR-

related mechanisms in AD, where the confounding influence of age-related pathologies such as 

hypertensive cerebrovascular disease are unlikely due to early disease onset (Bateman et al., 

2011). However, although pathological brain alterations in ADAD are largely comparable to 

those in sporadic late-onset AD (Bateman et al., 2011; Bateman et al., 2012; Gordon et al., 

2018), there are important differences. Compared to sporadic AD, ADAD is associated with 

greater subcortical deposition of Ab and higher occurrence of atypical “cotton wool” amyloid 

plaques (Day et al., 2016). Therefore, the validation of our findings on the protective effects of 

SyS in sporadic AD is important. Together, these results provide evidence for a protective role 

of SyS in AD regardless of disease etiology. 
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In the current study, SyS was slightly reduced in participants with biomarker evidence of 

sporadic AD but not ADAD, however the overlap in SyS was large in ADNI between the AD 

and non-AD groups. One possible explanation for the inconsistency between ADNI and DIAN 

is that not all ADAD individuals yet showed elevated levels of AD pathology, which may have 

reduced our power to detect the small AD-related reduction in SyS. Our results of SyS decreases 

in sporadic, Ab-positive participants are consistent with previous reports of reduced segregation 

of functional networks in elderly participants with elevated biomarker levels of Ab (Brier et 

al., 2014). The reduction of SyS in participants with elevated levels of Ab raises the possibility 

that individuals with higher SyS had simply less severe AD pathology and thus lower cognitive 

impairment. However, we consider this explanation unlikely. Note that we tested the interaction 

effect of SyS by tau-PET on cognition, where in individuals with higher SyS, the decrease in 

cognition per unit increase in tau pathology was attenuated. Therefore, the critical test for CR 

was whether SyS was associated with an attenuated effect of tau PET on cognitive impairment 

rather than the level of tau pathology per se. Moreover, within the group of amyloid-PET 

positive participants, SyS was not related to amyloid PET levels or tau PET, where SyS was 

still associated with an attenuated association between tau PET and cognitive decline. Thus, the 

association between SyS and CR cannot be simply attributed to lower levels of core AD 

pathology in individuals with higher SyS.  

The specific functional mechanisms that link SyS to higher cognitive performance are not fully 

understood. A recent theoretical framework suggested that SyS could be regulated by multiple 

control mechanisms such as hub connectivity in cognitive control networks (Medaglia et al., 

2017; Bertolero et al., 2018). Higher system segregation is under the tight control of hubs, i.e. 

highly connected regions that are thought to be central to brain function (Ito et al., 2017). In 

cognitively normal individuals, higher connectivity between hubs and major networks in the 

brain are associated with higher segregation of functional networks, which, in turn, are 

associated with higher cognitive performance across different cognitive domains (Bertolero et 
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al., 2018). We and others have previously shown that both higher resting-state and task-related 

functional connectivity of a global hub in the cognitive control network is associated with 

higher CR (Franzmeier et al., 2017a; Franzmeier et al., 2017b; Franzmeier et al., 2017c; 

Franzmeier et al., 2018a; Franzmeier et al., 2018c; Neitzel et al., 2019a). In addition, functional 

connectivity and activity of the anterior cingulate, another hub in the brain linked with higher 

modularity and higher general cognitive function (Hilger et al., 2017; Tang et al., 2019), has 

been repeatedly associated with higher CR in aging and AD (Arenaza-Urquijo et al., 2013; 

Arenaza-Urquijo et al., 2019). Together, these findings suggest that higher SyS may be a 

downstream final pathway of functional topology of the brain that supports CR in AD. Here, it 

is important to consider that our results are based on resting-state fMRI which may act as a 

baseline reference of functional brain organization from which task-specific network changes 

occur (Cole et al., 2016; Wig, 2017). Brain network interactions have been shown to 

dynamically change during task-demands, depending on whether a given cognitive task 

requires information integration or segregation across networks (Cole et al., 2013; Cohen and 

D'Esposito, 2016). Thus, it will be a critical next step to assess whether higher resting-state SyS 

is associated with task-specific network reorganization and cognitive performance. A further 

open question is whether the interindividual differences in SyS are persistent throughout life 

and which factors may have caused such differences. Note that we used the term cognitive 

resilience (CR) rather than cognitive reserve in the current study to remain agnostic to varies 

sources of influence that may have determined or shaped SyS. Life span studies are need to 

address genetic (Dumitrescu et al., 2020), life style (Livingston et al., 2020) and age-specific 

factors (Chan et al., 2018a) that influence SyS.   

 

Limitations 

One limitation is that we assessed SyS based on a priori defined large-scale resting-state 

networks rather than networks/modules defined at the individual level. Network boundaries 
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may change during aging and disease, and thus the measure of SyS and modularity Q based on 

pre-defined networks may be altered due to ill-defined networks. However, large-scale resting 

state networks have been shown to be highly reproducible in aging and AD. A major advantage 

of choosing canonical resting state networks as the basic units is the increased interpretability 

of the findings, given the extensive cognitive characterization of such networks (Smith et al., 

2009). An alternate computation of the modularity index Q is based on a data-driven 

determination of networks (Newman, 2006), including the search for the optimal clustering of 

functional connections. However, the modularity optimization search is a non-deterministic 

polynomial hard problem (Brandes et al., 2008), where the optimization depends on multiple 

parameters without any hard criteria of choosing the best model (Betzel and Bassett, 2017). 

Therefore, from a clinical point of view, it is more attractive to resort to a priori well-established 

and cognitively characterized functional networks as the basic units of network analysis. 

Another caveat is how stable and reproducible SyS is across time. FMRI connectivity 

estimation can be biased by physiological noise (e.g. respiratory and cardiac signals) and 

motion artifacts which may limit reliable estimation of SyS or Q (Power et al., 2014; Geerligs 

et al., 2017). To correct for motion artifacts we combined motion correction, motion regression 

and motion scrubbing, referring to the censoring of high-motion volumes from fMRI data, 

which has been shown to minimize the influence of motion on connectivity estimation (Power 

et al., 2014). In addition, we included subject-specific average motion estimates as covariates 

in 2nd level statistical models to additionally correct the assessment of SyS by tau-PET (ADNI) 

or SyS by EYO (DIAN) interaction models for motion during the fMRI scan. While the 

currently employed motion correction pipeline has been motivated by previous work (Power et 

al., 2014), we would like to acknowledge that other motion correction approaches methods 

have been also proposed, including data interpolation, principal-component based denoising 

etc., and there is currently no “best” motion-correction pipeline (Caballero-Gaudes and 

Reynolds, 2017). For physiological noise (e.g. respiratory and cardiac signals), there were no 
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consistent measures available across the cohorts, hence we encourage future studies to validate 

our findings using fMRI data with concurrent physiological recordings. Regarding test-retest 

reliability of the currently used fMRI measures, there is a dearth of data for SyS. However, 

previous studies on the modularity index Q show moderate test-retest variability, which was 

superior to the reliability of first order interregional connectivity measures (Braun et al., 2012), 

e.g. commonly used pair-wise ROI-to-ROI correlations. Importantly, the size of inter-

individual differences in modularity exceed that of temporal fluctuations of modularity within 

an individual (Stevens et al., 2012), supporting the view that fMRI assessed modularity may 

serve as a fingerprint of cognitive resilience in participants.  

 

Conclusions 

We demonstrated for the first time that individuals with higher SyS exhibited attenuated 

cognitive impairment at a given level of AD pathology. Higher modular organization of the 

brain may thus play an important role in maintaining relatively well cognitive abilities in the 

face of AD pathology. The resting-state fMRI-based assessment of SyS provides thus both 

mechanistic insight into functional brain differences that support CR as well as a promising 

approach to develop a marker to predict progression of cognitive decline in AD.  
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Table 1. Sample characteristics in each group 
ADNI CN Ab- 

(n=184) 
CN Ab+ 
(n=89) 

MCI Ab+ 
(n=59) 

AD Dementia 
(n=8) 

p-value 

Age 72.3 (6.8) 75.8 (6.6) 76.3 (7.5) 73.5 (11.5) <0.001 
Gender (f/m) 112/72 56/33 25/34 3/5 0.033 

Education 16.9 (2.3) 16.4 (2.5) 15.8 (2.7) 16.3 (2.3) 0.010 
ADAS13 12.2 (4.6) 13.6 (5.6) 22.8 (10.5) 31.7 (8.6) <0.001 

DIAN Non-carrier 
(n=71) 

Mutation-
Carrier 
(n=108) 

  p-value 

Age 38.1 (10.3) 38.0 (10.5)   0.953 
EYO -9.8 (11.0) -8.6 (11.2)   0.470 

Gender (f/m) 44/27 68/40   0.990 
Education 15.2 (3.1) 14.2 (3.3)   0.033 

Global cognitive 
composite 

0.19 (0.2) -0.15 (0.5)   <0.001 

 
That classification of Ab+ or Ab-status was based on a previously established cut-point 
(global AV45 SUVR > 1.11) (Landau et al., 2012). For continuous measures, the mean (and 
standard deviation) are displayed.  
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Figure 1: 

 
400-ROI Brain parcellation that was used to determine functional connectivity and system 
segregation between brain networks (Schaefer et al., 2017). 
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Figure 2: 

 
Group differences in system segregation between controls and patients with autosomal 
dominant (DIAN) and sporadic (ADNI) Alzheimer’s disease. 
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Figure 3:  

 
Interaction effect of system segregation by disease progression markers on cognitive 
performance in autosomal dominant (A and B) and sporadic Alzheimer’s disease (C and D). 
Note that interaction effects were determined using continuous values of system segregation, 
while median splits are for illustrational purposes only. Note that higher scores on the ADAS13 
(panel C) indicates worse cognition, whereas higher scores on the composite measures (A,B, 
and D) indicate better cognition. 
 
 
  



	 34	

 
Supplementary Figure 1: 

 
Interaction effect of modularity Q by disease progression markers on cognitive performance in 
autosomal dominant (A&B) and sporadic Alzheimer’s disease (C&D). Note that interaction 
effects were determined using continuous values of system segregation, while median splits are 
for illustrational purposes only. Note that higher scores on the ADAS13 (panel C) indicates 
worse cognition, whereas higher scores on the composite measures (A,B, and D) indicate better 
cognition. 
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