865 research outputs found

    Density measurement of OH radicals in non-thermal plasmas by laser induced fluorescence and time-resolved absorption spectroscopy

    Get PDF
    In the present thesis work, we have developed two different experimental setups for the optical detection of the OH radical in discharges at atmospheric pressure. The first one allows us to improve the time-resolved broad-band absorption spectroscopy. The main advances of the new set up are a better collimation of the UV light and a novel gating scheme. They both significantly reduce the interference of the plasma-induced emission on the absorption measurement. The second setup is dedicated to an improved laser induced fluorescence experiment, which takes advantage of a novel multi-transition excitation scheme. This permits the simultaneous measurements of both the OH density and its ground state rotational temperature. In addition, we have developed a new rate-equation model to rationalize LIF spectra, by taking into account the electronic quenching, the vibrational and rotational energy transfers, and the spatial profile of the laser beam. Finally, the electrical power dissipated in the discharge was accurately measured

    Destruction of dimethyl ether and methyl formate by collisions with He+^+

    Full text link
    To correctly model the abundances of interstellar complex organic molecules (iCOMS) in different environments, both formation and destruction routes should be appropriately accounted for. While several scenarios have been explored for the formation of iCOMs via grain and gas-phase processes, much less work has been devoted to understanding the relevant destruction pathways, with special reference to (dissociative) charge exchange or proton transfer reactions with abundant atomic and molecular ions such as He+^+, H3+_3^+ and HCO+^+. By using a combined experimental and theoretical methodology we provide new values for the rate coefficients and branching ratios (BRs) of the reactions of He+^+ ions with two important iCOMs, namely dimethyl ether (DME) and methyl formate (MF). We also review the destruction routes of DME and MF by other two abundant ions, namely H3+_3^+ and HCO+^+. Based on our recent laboratory measurements of cross sections and BRs for the DME/MF + He+^+ reactions over a wide collision energy range, we extend our theoretical insights on the selectivity of the microscopic dynamics to calculate the rate coefficients k(T)k(T) in the temperature range from 10 to 298 K. We implement these new and revised kinetic data in a general model of cold and warm gas, simulating environments where DME and MF have been detected. Due to stereodynamical effects present at low collision energies, the rate coefficients, BRs and temperature dependences here proposed differ substantially from those reported in KIDA and UDfA, two of the most widely used astrochemical databases. These revised rates impact the predicted abundances of DME and MF, with variations up to 40% in cold gases and physical conditions similar to those present in prestellar coresComment: accepted for publication in Astronomy and Astrophysics (manuscript no. AA/2018/34585), 10 pages, 3 figure

    Neurobiological Dysfunctional Substrates for the Self-Medication Hypothesis in Adult Individuals with Attention-Deficit Hyperactivity Disorder and Cocaine Use Disorder:A Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography Study

    Get PDF
    Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD–CoUD).Materials and Methods: We included 19 ADHD–CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD–CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions.Results: The voxel-wise and ROIs-based approaches showed that ADHD–CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD–CoUD patients. Moreover, connectivity analyses revealed that ADHD–CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]).Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD–CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD–CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).</p

    Neurobiological Dysfunctional Substrates for the Self-Medication Hypothesis in Adult Individuals with Attention-Deficit Hyperactivity Disorder and Cocaine Use Disorder:A Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography Study

    Get PDF
    Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD–CoUD).Materials and Methods: We included 19 ADHD–CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD–CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions.Results: The voxel-wise and ROIs-based approaches showed that ADHD–CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD–CoUD patients. Moreover, connectivity analyses revealed that ADHD–CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]).Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD–CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD–CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).</p

    Environmental effects on the growth of super massive black holes and AGN feedback

    Full text link
    We investigate how environmental effects by gas stripping alter the growth of a super massive black hole (SMBH) and its host galaxy evolution, by means of 1D hydrodynamical simulations that include both mechanical and radiative AGN feedback effects. By changing the truncation radius of the gas distribution (R_t), beyond which gas stripping is assumed to be effective, we simulate possible environments for satellite and central galaxies in galaxy clusters and groups. The continuous escape of gas outside the truncation radius strongly suppresses star formation, while the growth of the SMBH is less affected by gas stripping because the SMBH accretion is primarily ruled by the density of the central region. As we allow for increasing environmental effects - the truncation radius decreasing from about 410 to 50 kpc - we find that the final SMBH mass declines from about 10^9 to 8 x 10^8 Msol, but the outflowing mass is roughly constant at about 2 x 10^10 Msol. There are larger change in the mass of stars formed, which declines from about 2 x 10^10 to 2 x 10^9 Msol, and the final thermal X-ray gas, which declines from about 10^9 to 5 x 10^8 Msol, with increasing environmental stripping. Most dramatic is the decline in the total time that the objects would be seen as quasars, which declines from 52 Myr (for R_t = 377 kpc) to 7.9 Myr (for R_t = 51 kpc). The typical case might be interpreted as a red and dead galaxy having episodic cooling flows followed by AGN feedback effects resulting in temporary transitions of the overall galaxy color from red to green or to blue, with (cluster) central galaxies spending a much larger fraction of their time in the elevated state than do satellite galaxies.(Abridged)Comment: Accepted for publication in Ap

    Performance isolation for network slices in Industry 4.0: The 5Growth approach

    Get PDF
    Network slicing plays a key role in the 5G ecosystem for verticals to introduce new use cases in the industrial sector, i.e., Industry 4.0. However, a widely recognized challenge of network slicing is to provide traffic isolation and concurrently satisfy diverse performance requirements, e.g., bandwidth and latency. Such challenge becomes even more important when serving a large number of network traffic flows under a resource-limited condition between distributed sites, e.g., factory floor and remote office. In this work, we present the capability to retain these two goals at the same time, by applying the virtual queue notion over a priority queuing based pipeline in P4 switch over software-defined networks. To examine the effectiveness of our approach, a proof-of-concept is setup to serve different requests of Industry 4.0 use cases over a mixed data path, including P4 switch and Open vSwitch, for a large number of network flows.This work was supported in part by the EU H2020 5GROWTH Project under Grant 856709

    Innovative remote plasma source for atomic layer deposition for GaN devices

    Get PDF
    High-quality dielectric films could enable GaN normally off high-electron-mobility transistors (HEMTs). Plasma atomic layer deposition (ALD) is known to allow for controlled high-quality thin-film deposition, and in order to not exceed energy and flux levels leading to device damage, the plasma used should preferably be remote for many applications. This article outlines ion energy flux distribution functions and flux levels for a new remote plasma ALD system, Oxford Instruments Atomfab™, which includes an innovative, RF-driven, remote plasma source. The source design is optimized for ALD for GaN HEMTs for substrates up to 200 mm in diameter and allows for Al2O3 ALD cycles of less than 1 s. Modest ion energies of &lt;50 eV and very low ion flux levels of &lt;1013 cm−2 s−1 were found at low-damage conditions. The ion flux can be increased to the high 1014 cm−2 s−1 range if desired for other applications. Using low-damage conditions, fast ALD saturation behavior and good uniformity were demonstrated for Al2O3. For films of 20 nm thickness, a breakdown voltage value of 8.9 MV/cm was obtained and the Al2O3 films were demonstrated to be suitable for GaN HEMT devices where the combination with plasma pretreatment and postdeposition anneals resulted in the best device parameters
    • …
    corecore