235 research outputs found

    Cumulative Head Impact Burden in High School Football

    Full text link
    Impacts to the head are common in collision sports such as football. Emerging research has begun to elucidate concussion tolerance levels, but sub-concussive impacts that do not result in clinical signs or symptoms of concussion are much more common, and are speculated to lead to alterations in cerebral structure and function later in life. We investigated the cumulative number of head impacts and their associated acceleration burden in 95 high school football players across four seasons of play using the Head Impact Telemetry System (HITS). The 4-year investigation resulted in 101,994 impacts collected across 190 practice sessions and 50 games. The number of impacts per 14-week season varied by playing position and starting status, with the average player sustaining 652 impacts. Linemen sustained the highest number of impacts per season (868); followed by tight ends, running backs, and linebackers (619); then quarterbacks (467); and receivers, cornerbacks, and safeties (372). Post-impact accelerations of the head also varied by playing position and starting status, with a seasonal linear acceleration burden of 16,746.1g, while the rotational acceleration and HIT severity profile burdens were 1,090,697.7-rad/sec2 and 10,021, respectively. The adolescent athletes in this study clearly sustained a large number of impacts to the head, with an impressive associated acceleration burden as a direct result of football participation. These findings raise concern about the relationship between sub-concussive head impacts incurred during football participation and late-life cerebral pathogenesis, and justify consideration of ways to best minimize impacts and mitigate cognitive declines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90454/1/neu-2E2011-2E1825.pd

    Nuclear translocation of cardiac G protein-Coupled Receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process.

    Get PDF
    G protein-Coupled Receptors (GPCRs) kinases (GRKs) play a crucial role in regulating cardiac hypertrophy. Recent data from our lab has shown that, following ventricular pressure overload, GRK5, a primary cardiac GRK, facilitates maladaptive myocyte growth via novel nuclear localization. In the nucleus, GRK5\u27s newly discovered kinase activity on histone deacetylase 5 induces hypertrophic gene transcription. The mechanisms governing the nuclear targeting of GRK5 are unknown. We report here that GRK5 nuclear accumulation is dependent on Ca(2+)/calmodulin (CaM) binding to a specific site within the amino terminus of GRK5 and this interaction occurs after selective activation of hypertrophic Gq-coupled receptors. Stimulation of myocytes with phenylephrine or angiotensinII causes GRK5 to leave the sarcolemmal membrane and accumulate in the nucleus, while the endothelin-1 does not cause nuclear GRK5 localization. A mutation within the amino-terminus of GRK5 negating CaM binding attenuates GRK5 movement from the sarcolemma to the nucleus and, importantly, overexpression of this mutant does not facilitate cardiac hypertrophy and related gene transcription in vitro and in vivo. Our data reveal that CaM binding to GRK5 is a physiologically relevant event that is absolutely required for nuclear GRK5 localization downstream of hypertrophic stimuli, thus facilitating GRK5-dependent regulation of maladaptive hypertrophy

    The USNO-B Catalog

    Full text link
    USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7,435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21, 0.2 arcsecond astrometric accuracy at J2000, 0.3 magnitude photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from non-stellar objects. A brief discussion of various issues is given here, but the actual data are available from http://www.nofs.navy.mil and other sites.Comment: Accepted by Astronomical Journa

    LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    Get PDF
    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures

    The Spectroscopic Data Processing Pipeline for the Dark Energy Spectroscopic Instrument

    Full text link
    We describe the spectroscopic data processing pipeline of the Dark Energy Spectroscopic Instrument (DESI), which is conducting a redshift survey of about 40 million galaxies and quasars using a purpose-built instrument on the 4-m Mayall Telescope at Kitt Peak National Observatory. The main goal of DESI is to measure with unprecedented precision the expansion history of the Universe with the Baryon Acoustic Oscillation technique and the growth rate of structure with Redshift Space Distortions. Ten spectrographs with three cameras each disperse the light from 5000 fibers onto 30 CCDs, covering the near UV to near infrared (3600 to 9800 Angstrom) with a spectral resolution ranging from 2000 to 5000. The DESI data pipeline generates wavelength- and flux-calibrated spectra of all the targets, along with spectroscopic classifications and redshift measurements. Fully processed data from each night are typically available to the DESI collaboration the following morning. We give details about the pipeline's algorithms, and provide performance results on the stability of the optics, the quality of the sky background subtraction, and the precision and accuracy of the instrumental calibration. This pipeline has been used to process the DESI Survey Validation data set, and has exceeded the project's requirements for redshift performance, with high efficiency and a purity greater than 99 percent for all target classes.Comment: AJ, revised version, 55 pages, 55 figures, 4 table

    Patient and Regimen Characteristics Associated with Self-Reported Nonadherence to Antiretroviral Therapy

    Get PDF
    BACKGROUND: Nonadherence to antiretroviral therapy (ARVT) is an important behavioral determinant of the success of ARVT. Nonadherence may lead to virological failure, and increases the risk of development of drug resistance. Understanding the prevalence of nonadherence and associated factors is important to inform secondary HIV prevention efforts. METHODOLOGY/PRINCIPAL FINDINGS: We used data from a cross-sectional interview study of persons with HIV conducted in 18 U.S. states from 2000-2004. We calculated the proportion of nonadherent respondents (took <95% of prescribed doses in the past 48 hours), and the proportion of doses missed. We used multivariate logistic regression to describe factors associated with nonadherence. Nine hundred and fifty-eight (16%) of 5,887 respondents reported nonadherence. Nonadherence was significantly (p<0.05) associated with black race and Hispanic ethnicity; age <40 years; alcohol or crack use in the prior 12 months; being prescribed >or=4 medications; living in a shelter or on the street; and feeling "blue" >or=14 of the past 30 days. We found weaker associations with having both male-male sex and injection drug use risks for HIV acquisition; being prescribed ARVT for >or=21 months; and being prescribed a protease inhibitor (PI)-based regimen not boosted with ritonavir. The median proportion of doses missed was 50%. The most common reasons for missing doses were forgetting and side effects. CONCLUSIONS/SIGNIFICANCE: Self-reported recent nonadherence was high in our study. Our data support increased emphasis on adherence in clinical settings, and additional research on how providers and patients can overcome barriers to adherence

    Dark energy survey year 1 results: curved-sky weak lensing mass map

    Get PDF
    We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than the previous work, is constructed over a contiguous ≈1500 deg2, covering a comoving volume of ≈10 Gpc3. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogues, METACALIBRATION and IM3SHAPE, with sources at redshift 0.2 < z < 1.3, and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal to noise in the E-mode map and the B-mode map is ∼1.5 (∼2) when smoothed with a Gaussian filter of σG = 30 (80) arcmin. The second and third moments of the convergence κ in the maps are in agreement with simulations. We also find no significant correlation of κ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation with different foreground tracers of mass and (2) exploration of the largest peaks and voids in the maps

    A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5

    Full text link
    In this white paper, we present an experimental road map for spectroscopic experiments beyond DESI. DESI will be a transformative cosmological survey in the 2020s, mapping 40 million galaxies and quasars and capturing a significant fraction of the available linear modes up to z=1.2. DESI-II will pilot observations of galaxies both at much higher densities and extending to higher redshifts. A Stage-5 experiment would build out those high-density and high-redshift observations, mapping hundreds of millions of stars and galaxies in three dimensions, to address the problems of inflation, dark energy, light relativistic species, and dark matter. These spectroscopic data will also complement the next generation of weak lensing, line intensity mapping and CMB experiments and allow them to reach their full potential.Comment: Contribution to Snowmass 202
    corecore