54 research outputs found

    Apoptotic epitope-specific CD8+ T cells and interferon signaling intersect in chronic hepatitis C virus infection

    Get PDF
    CD8(+) T cells specific to caspase-cleaved antigens derived from apoptotic T cells represent a principal player in chronic immune activation (CIA). Here, we found that both apoptotic epitope (AE)-specific and hepatitis C virus (HCV)-specific CD8(+) T cells were mostly confined within the effector memory (EM) or terminally differentiated EM CD45RA(+) cell subsets expressing a dysfunctional T-helper-1-like signature program in chronic (c)HCV infection. However, AE-specific CD8(+) T cells produced tumor necrosis factor (TNF)-α and interleukin-2 at the intrahepatic level significantly more than HCV-specific CD8(+) T cells, despite both populations acquiring high levels of programmed death-1 receptor expression. Contextually, only AE-specific CD8(+) T cells correlated with both interferon-stimulated gene levels in T cells and hepatic fibrosis score. Taken together, these data suggest that AE-specific CD8(+) T cells can sustain CIA by their capacity to produce TNF-α and be resistant to inhibitory signals more than HCV-specific CD8(+) T cells in cHCV infection

    Health Related Quality of Life in Common Variable Immunodeficiency

    Get PDF
    Purpose: To quantify the health related quality of life in primary immunodeficiency patients. Materials and Methods: We used generic health status and general psychological health questionnaires to determine the range of issues that needed to be considered in examining the burden of common variable immunodeficiency (CVID). Results: The health status of patients with CVID was lower than that observed in normal subjects. Overall, Role-Physical and General Health scales correlated with a poorer clinical status. Surprisingly, the duration of disease did not influence health status. Being female, older, General Health Questionnaire-positive and alexithymic proved to be major risk factors associated with a poor health status. Patients with chronic lung disease and chronic diarrhea had the lowest values on the Medical Outcome Study, Short Form SF-36 (SF-36) scales. Disease severity perception was associated with the General Health Questionnaire and alexithymia status. Limitations in daily activities as a result of lower physical health were the major problems facing common variable immunodeficiency patients. Conclusion: Our data underlined the importance of conducting a periodical health related quality of life assessment on patients with primary antibody deficiencies and, moreover, stressed the necessity of providing psychological support to at risk patients. © Yonsei University College of Medicine 2012

    Interferon-α Improves Phosphoantigen-Induced Vγ9Vδ2 T-Cells Interferon-γ Production during Chronic HCV Infection

    Get PDF
    In chronic HCV infection, treatment failure and defective host immune response highly demand improved therapy strategies. Vγ9Vδ2 T-cells may inhibit HCV replication in vitro through IFN-γ release after Phosphoantigen (PhAg) stimulation. The aim of our work was to analyze Vγ9Vδ2 T-cell functionality during chronic HCV infection, studying the role of IFN-α on their function capability. IFN-γ production by Vγ9Vδ2 T-cells was analyzed in vitro in 24 HCV-infected patients and 35 healthy donors (HD) after PhAg stimulation with or without IFN-α. The effect of in vivo PhAg/IFN-α administration on plasma IFN-γ levels was analyzed in M. fascicularis monkeys. A quantitative analysis of IFN-γ mRNA level and stability in Vγ9Vδ2 T-cells was also evaluated. During chronic HCV infection, Vγ9Vδ2 T-cells showed an effector/activated phenotype and were significantly impaired in IFN-γ production. Interestingly, IFN-α was able to improve their IFN-γ response to PhAg both in vitro in HD and HCV-infected patients, and in vivo in Macaca fascicularis primates. Finally, IFN-α increased IFN-γ-mRNA transcription and stability in PhAg-activated Vγ9Vδ2 T-cells. Altogether our results show a functional impairment of Vγ9Vδ2 T-cells during chronic HCV infection that can be partially restored by using IFN-α. A study aimed to evaluate the antiviral impact of PhAg/IFN-α combination may provide new insight in designing possible combined strategies to improve HCV infection treatment outcome

    Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis.

    Get PDF
    BACKGROUND: Here, we evaluated the hypothesis that CD8(+) T cell responses to caspase-cleaved antigens derived from effector T cells undergoing apoptosis, may contribute to multiple sclerosis (MS) immunopathology. METHODS: The percentage of autoreactive CD8(+) T effector cells specific for various apoptotic T cell-associated self-epitopes (apoptotic epitopes) were detected in the peripheral blood and cerebrospinal fluid (CSF) by both enzyme-linked immunospot and dextramers of class I molecules complexed with relevant apoptotic epitopes. Moreover, the capacity of dextramer(+) CD8(+) T cells to produce interferon (IFN)-γ and/or interleukin (IL)-17 in response to the relevant apoptotic epitopes was evaluated by the intracellular cytokine staining. Cross-presentation assay of apoptotic T cells by dendritic cells was also evaluated ex vivo. RESULTS: We found that polyfunctional (IFN-γ and/or IL-17 producing) autoreactive CD8(+) T cells specific for apoptotic epitopes were represented in MS patients with frequencies significantly higher than in healthy donors. These autoreactive CD8(+) T cells with a strong potential to produce IFN-γ or IL-17 in response to the relevant apoptotic epitopes were significantly accumulated in the CSF from the same patients. In addition, the frequencies of these autoreactive CD8(+) T cells correlated with the disease disability. Cross-presentation assay revealed that caspase-cleaved cellular proteins are required to activate apoptotic epitope-specific CD8(+) T cells ex vivo. CONCLUSION: Taken together, these data indicate that apoptotic epitope-specific CD8(+) T cells with strong inflammatory potential are recruited at the level of the inflammatory site, where they may be involved in MS immunopathology through the production of high levels of inflammatory cytokines

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    Embryo-Specific Reduction of ADP-Glc Pyrophosphorylase Leads to an Inhibition of Starch Synthesis and a Delay in Oil Accumulation in Developing Seeds of Oilseed Rape

    No full text
    In oil-storing Brassica napus (rape) seeds, starch deposition occurs only transiently in the early stages of development, and starch is absent from mature seeds. This work investigates the influence of a reduction of ADP-Glc pyrophosphorylase (AGPase) on storage metabolism in these seeds. To manipulate the activity of AGPase in a seed-specific manner, a cDNA encoding the small subunit of AGPase was expressed in the sense or antisense orientation under the control of an embryo-specific thioesterase promoter. Lines were selected showing an embryo-specific decrease in AGPase due to antisense and cosuppression at different stages of development. At early developmental stages (25 days after flowering), a 50% decrease in AGPase activity was accompanied by similar decreases in starch content and the rate of starch synthesis measured by injecting (14)C-Suc into seeds in planta. In parallel to inhibition of starch synthesis, the level of ADP-Glc decreased, whereas Glc 1-phosphate levels increased, providing biochemical evidence that inhibition of starch synthesis was due to repression of AGPase. At 25 days after flowering, repression of starch synthesis also led to a decrease in the rate of (14)C-Suc degradation and its further metabolism via other metabolic pathways. This was not accompanied by an increase in the levels of soluble sugars, indicating that Suc import was inhibited in parallel. Flux through glycolysis, the activities of hexokinase, and inorganic pyrophosphate-dependent phosphofructokinase, and the adenylate energy state (ATP to ADP ratio) of the transgenic seeds decreased, indicating inhibition of glycolysis and respiration compared to wild type. This was accompanied by a marked decrease in the rate of storage lipid (triacylglycerol) synthesis and in the fatty acid content of seeds. In mature seeds, glycolytic enzyme activities, metabolite levels, and ATP levels remained unchanged, and the fatty acid content was only marginally lower compared to wild type, indicating that the influence of AGPase on carbon metabolism and oil accumulation was largely compensated for in the later stages of seed development. Results indicate that AGPase exerts high control over starch synthesis at early stages of seed development where it is involved in establishing the sink activity of the embryo and the onset of oil accumulation
    • …
    corecore