121 research outputs found

    Phenotypic variability in patients with osteogenesis imperfecta caused by BMP1 mutations.

    Get PDF
    Osteogenesis Imperfecta (OI) is an inherited bone fragility disorder most commonly associated with autosomal dominant mutations in the type I collagen genes. Autosomal recessive mutations in a number of genes have also been described, including the BMP1 gene that encodes the mammalian Tolloid (mTLD) and its shorter isoform bone morphogenic protein-1 (BMP1). To date, less than 20 individuals with OI have been identified with BMP1 mutations, with skeletal phenotypes ranging from mild to severe and progressively deforming. In the majority of patients, bone fragility was associated with increased bone mineral density (BMD); however, the full range of phenotypes associated with BMP1 remains unclear. Here, we describe three children with mutations in BMP1 associated with a highly variable phenotype: a sibship homozygous for the c.2188delC mutation that affects only the shorter BMP1 isoform and a further patient who is compound heterozygous for a c.1293C>G nonsense mutation and a c.1148G>A missense mutation in the CUB1 domain. These individuals had recurrent fractures from early childhood, are hypermobile and have no evidence of dentinogenesis imperfecta. The homozygous siblings with OI had normal areal BMD by dual energy X-ray absorptiometry whereas the third patient presented with a high bone mass phenotype. Intravenous bisphosphonate therapy was started in all patients, but discontinued in two patients and reduced in another due to concerns about increasing bone stiffness leading to chalk-stick fractures. Given the association of BMP1-related OI with very high bone material density, concerns remain whether anti-resorptive therapy is indicated in this ultra-rare form of OI.© 2016 Wiley Periodicals, Inc

    Schuurs–Hoeijmakers Syndrome (PACS1 Neurodevelopmental Disorder): Seven Novel Patients and a Review

    Get PDF
    Síndrome de Schuurs-Hoeijmakers; Discapacitat intel·lectual; Trastorns rarsSíndrome de Schuurs-Hoeijmakers; Discapacidad intelectual; Trastornos rarosSchuurs–Hoeijmakers syndrome; Intellectual disability; Rare disordersSchuurs–Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopmental disorder is a rare disorder characterized by intellectual disability, abnormal craniofacial features and congenital malformations. SHMS is an autosomal dominant hereditary disease caused by pathogenic variants in the PACS1 gene. PACS1 is a trans-Golgi-membrane traffic regulator that directs protein cargo and several viral envelope proteins. It is upregulated during human embryonic brain development and has low expression after birth. So far, only 54 patients with SHMS have been reported. In this work, we report on seven new identified SHMS individuals with the classical c.607C > T: p.Arg206Trp PACS1 pathogenic variant and review clinical and molecular aspects of all the patients reported in the literature, providing a summary of clinical findings grouped as very frequent (≥75% of patients), frequent (50–74%), infrequent (26–49%) and rare (less than ≤25%).This work was possible thanks to the funding provided by the project “Proyecto Piloto para la mejora del diagnóstico genético en personas y familias afectadas o con sospecha de padecer enfermedades raras de base genética” of the Ministry of Health, under the grant BOCM-20181126-24 provided by the Consejería de Sanidad de la Comunidad de Madrid. Funding to J.P. and F.J.R. was partially provided by the group research grant DGA/FEDER B32_17R/B32_20R

    High Performance of a Dominant/X-Linked Gene Panel in Patients with Neurodevelopmental Disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) affect 2-5% of the population and approximately 50% of cases are due to genetic factors. Since de novo pathogenic variants account for the majority of cases, a gene panel including 460 dominant and X-linked genes was designed and applied to 398 patients affected by intellectual disability (ID)/global developmental delay (GDD) and/or autism (ASD). Pathogenic variants were identified in 83 different genes showing the high genetic heterogeneity of NDDs. A molecular diagnosis was established in 28.6% of patients after high-depth sequencing and stringent variant filtering. Compared to other available gene panel solutions for NDD molecular diagnosis, our panel has a higher diagnostic yield for both ID/GDD and ASD. As reported previously, a significantly higher diagnostic yield was observed: (i) in patients affected by ID/GDD compared to those affected only by ASD, and (ii) in females despite the higher proportion of males among our patients. No differences in diagnostic rates were found between patients affected by different levels of ID severity. Interestingly, patients harboring pathogenic variants presented different phenotypic features, suggesting that deep phenotypic profiling may help in predicting the presence of a pathogenic variant. Despite the high performance of our panel, whole exome-sequencing (WES) approaches may represent a more robust solution. For this reason, we propose the list of genes included in our customized gene panel and the variant filtering procedure presented here as a first-tier approach for the molecular diagnosis of NDDs in WES studies

    Case report : Identification of a novel variant p.Gly215Arg in the CHN1 gene causing Moebius syndrome

    Get PDF
    Background: Moebius Syndrome (MBS) is a rare congenital neurological disorder characterized by paralysis of facial nerves, impairment of ocular abduction and other variable abnormalities. MBS has been attributed to both environmental and genetic factors as potential causes. Until now only two genes, PLXND1 and REV3L have been identified to cause MBS. Results: We present a 9-year-old male clinically diagnosed with MBS, presenting facial palsy, altered ocular mobility, microglossia, dental anomalies and congenital torticollis. Radiologically, he lacks both abducens nerves and shows altered symmetry of both facial and vestibulocochlear nerves. Whole-exome sequence identified a de novo missense variant c.643

    A large, ten-generation family with autosomal dominant preaxial polydactyly/triphalangeal thumb: Historical, clinical, genealogical, and molecular studies

    Get PDF
    We present a large, ten-generation family of 273 individuals with 84 people having preaxial polydactyly/triphalangeal thumb due to a pathogenic variant in the zone of polarizing activity regulatory sequence (ZRS) within the exon 5 of LMBR1. The causative change maps to position 396 of the ZRS, located at position c.423 + 4909C > T (chr7:156791480; hg38; LMBR1 ENST00000353442.10; rs606231153 NG_009240.2) in the intron 5 of LMBR1. The first affected individual with the disorder was traced back to mid-1700, when some settlers and workers established in Cervera de Buitrago, a small village about 82 km North to Madrid. Clinical and radiological studies of most of the affected members have been performed for 42 years (follow-up of the family by LFGA). Molecular studies have confirmed a pathogenic variant in the ZRS that segregates in this family. To the best of our knowledge, this is the largest family with preaxial polydactyly/triphalangeal thumb reported so far.Instituto de Salud Carlos III, Grant/Award Number: PI20/0105

    A standard of care for individuals with PIK3CA ‐related disorders: an international expert consensus statement

    Get PDF
    Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge

    Genetic analysis of osteogenesis imperfecta in the Palestinian population : molecular screening of 49 affected families

    Get PDF
    Background : Osteogenesis imperfecta (OI) is a heterogeneous hereditary connective tissue disorder clinically hallmarked by increased susceptibility to bone fractures. Methods : We analyzed a cohort of 77 diagnosed OI patients from 49 unrelated Palestinian families. Next-generation sequencing technology was used to screen a panel of known OI genes. Results : In 41 probands, we identified 28 different disease-causing variants of 9 different known OI genes. Eleven of the variants are novel. Ten of the 28 variants are located in COL1A1, five in COL1A2, three in BMP1, three in FKBP10, two in TMEM38B, two in P3H1, and one each in CRTAP, SERPINF1, and SERPINH1. The absence of disease-causing variants in the remaining eight probands suggests further genetic heterogeneity in OI. In general, most OI patients (90%) harbor mainly variants in type I collagen resulting in an autosomal dominant inheritance pattern. However, in our cohort almost 61% (25/41) were affected with autosomal recessive OI. Moreover, we document a 21-kb genomic deletion in the TMEM38B gene identified in 29% (12/41) of the tested probands, making it the most frequent OI-causing variant in the Palestinian population. Conclusion : This is the first genetic screening of an OI cohort from the Palestinian population. Our data are important for genetic counseling of OI patients and families in highly consanguineous populations

    Genomic profiling distinguishes familial multiple and sporadic multiple meningiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meningiomas may occur either as familial tumors in two distinct disorders, familial multiple meningioma and neurofibromatosis 2 (NF2), or sporadically, as either single or multiple tumors in individuals with no family history. Meningiomas in NF2 and approximately 60% of sporadic meningiomas involve inactivation of the <it>NF2 </it>locus, encoding the tumor suppressor merlin on chromosome 22q. This study was undertaken to establish whether genomic profiling could distinguish familial multiple meningiomas from sporadic solitary and sporadic multiple meningiomas.</p> <p>Methods</p> <p>We compared 73 meningiomas presenting as sporadic solitary (64), sporadic multiple (5) and familial multiple (4) tumors using genomic profiling by array comparative genomic hybridization (array CGH).</p> <p>Results</p> <p>Sporadic solitary meningiomas revealed genomic rearrangements consistent with at least two mechanisms of tumor initiation, as unsupervised cluster analysis readily distinguished tumors with chromosome 22 deletion (associated with loss of the <it>NF2 </it>tumor suppressor) from those without chromosome 22 deletion. Whereas sporadic meningiomas without chromosome 22 loss exhibited fewer chromosomal imbalance events overall, tumors with chromosome 22 deletion further clustered into two major groups that largely, though not perfectly, matched with their benign (WHO Grade I) or advanced (WHO Grades II and III) histological grade, with the latter exhibiting a significantly greater degree of genomic imbalance (P < 0.001). Sporadic multiple meningiomas showed a frequency of genomic imbalance events comparable to the atypical grade solitary tumors. By contrast, familial multiple meningiomas displayed no imbalances, supporting a distinct mechanism for the origin for these tumors.</p> <p>Conclusion</p> <p>Genomic profiling can provide an unbiased adjunct to traditional meningioma classification and provides a basis for exploring the different genetic underpinnings of tumor initiation and progression. Most importantly, the striking difference observed between sporadic and familial multiple meningiomas indicates that genomic profiling can provide valuable information for differential diagnosis of subjects with multiple meningiomas and for considering the risk for tumor occurrence in their family members.</p

    A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date.</p> <p>Methods</p> <p>We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents.</p> <p>Results</p> <p>Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial <it>de novo </it>1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping.</p> <p>Conclusion</p> <p>The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.</p
    corecore