194 research outputs found

    Involvement of etfA gene during CaCO3 precipitation in Bacillus subtilis biofilm

    Get PDF
    The eftA gene in Bacillus subtilis has been suggested to be involved in the oxidation/reduction reactions during fatty acid metabolism. Interestingly etfA deletion in B. subtilis results in impairment in CaCO3 precipitation on the biofilm. Comparisons between the wild type B. subtilis 168 and its etfA mutant during in vitro CaCO3 crystal precipitation (calcite) revealed changes in phospholipids membrane composition with accumulation of up to 10% of anteiso-C17:0 and 11% iso-C17:0 long fatty acids. Ca2+ nucleation sites such as dipicolinic acid and teichoic acids seem to contribute to the CaCO3 precipitation. etfA mutant strain showed up to 40% less dipicolinic acid accumulation compared with B. subtilis 168, while a B. subtilis mutant impaired in teichoic acids synthesis was unable to precipitate CaCO3. In addition, B. subtilis etfA mutant exhibited acidity production leading to atypical flagella formation and inducing extensive lateral growth on the biofilm when grown on 1.4% agar. From the ecological point of view, this study shows a number of physiological aspects that are involved in CaCO3 organomineralization on biofilms

    Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis

    Get PDF
    Bacterial exopolymeric substances (EPS) are molecules released in response to the physiological stress encountered in the natural environment. EPS are structural components of the extracellular matrix in which cells are embedded during biofilm development. The chemical nature and functions of these EPS are dependent on the genetic expression of the cells within each biofilm. Although some bacterial matrices have been characterized, understanding of the function of the EPS is relatively limited, particularly within the Bacillus genus. Similar gaps of knowledge exist with respect to the chemical composition and specific roles of the macromolecules secreted by Bacillus subtilis in its natural environment. In this review, the different EPS from B. subtilis were classified into four main functional categories: structural (neutral polymers), sorptive (charged polymers), surface-active and active polymers. In addition, current information regarding the genetic expression, production and function of the main polymers secreted by B. subtilis strains, particularly those related to biofilm formation and its architecture, has been compiled. Further characterization of these EPS from B. subtilis remains a challenge

    Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant

    Get PDF
    Although the implications of calcium carbonate (CaCO(3)) precipitation by microorganisms in natural environments are quite relevant, the physiology and genetics of this phenomenon are poorly understood. We have chosen Bacillus subtilis 168 as our model to study which physiological aspects are associated with CaCO(3) (calcite) formation during biofilm development when grown on precipitation medium. A B. subtilis eftA mutant named FBC5 impaired in calcite precipitation was used for comparative studies. Our results demonstrate that inactivation of etfA causes a decrease in the pH of the precipitation medium during biofilm development. Further analysis demonstrated that eftA extrudes an excess of 0.7 mol H(+) L(-1) with respect to B. subtilis 168 strain. Using media buffered at different pH values, we were able to control calcite formation. Because etfA encodes the alpha-subunit of a putative flavoprotein involved in fatty acid metabolism, we compared the intracellular levels of NADH among strains. Our physiological assay showed that FBC5 accumulated up to 32 times more NADH than the wild-type strain. We propose that the accumulation of NADH causes a deregulation in the generation of the proton motive force (DeltamicroH(+)) in FBC5 producing the acidification

    Leak signature space: an original representation for robust leak location in water distribution networks

    Get PDF
    In this paper, an original model-based scheme for leak location using pressure sensors in water distribution networks is introduced. The proposed approach is based on a new representation called the Leak Signature Space (LSS) that associates a specific signature to each leak location being minimally affected by leak magnitude. The LSS considers a linear model approximation of the relation between pressure residuals and leaks that is projected onto a selected hyperplane. This new approach allows to infer the location of a given leak by comparing the position of its signature with other leak signatures. Moreover, two ways of improving the method's robustness are proposed. First, by associating a domain of influence to each signature and second, through a time horizon analysis. The efficiency of the method is highlighted by means of a real network using several scenarios involving different number of sensors and considering the presence of noise in the measurements.Postprint (published version

    Involvement of etfA gene during CaCO3 precipitation in Bacillus subtilis biofilm

    Get PDF
    The eftA gene in Bacillus subtilis has been suggested to be involved in the oxidation/reduction reactions during fatty acid metabolism. Interestingly etfA deletion in B. subtilis results in impairment in CaCO3 precipitation on the biofilm. Comparisons between the wild type B. subtilis 168 and its etfA mutant during in vitro CaCO3 crystal precipitation (calcite) revealed changes in phospholipids membrane composition with accumulation of up to 10% of anteiso-C17:0 and 11% iso-C17:0 long fatty acids. Ca2+ nucleation sites such as dipicolinic acid and teichoic acids seem to contribute to the CaCO3 precipitation. etfA mutant strain showed up to 40% less dipicolinic acid accumulation compared with B. subtilis 168, while a B. subtilis mutant impaired in teichoic acids synthesis was unable to precipitate CaCO3. In addition, B. subtilis etfA mutant exhibited acidity production leading to atypical flagella formation and inducing extensive lateral growth on the biofilm when grown on 1.4% agar. From the ecological point of view, this study shows a number of physiological aspects that are involved in CaCO3 organomineralization on biofilms

    Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect

    Get PDF
    Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30-50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus' probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies.Fil: Domínguez Rubio, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Martinez, Jimena Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Martínez Casillas, Diana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Nacional de Energía Atómica; ArgentinaFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Universidad Nacional de Luján. Departamento de Ciencias Básicas; ArgentinaFil: Piuri, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Perez, Oscar Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Universidad Nacional de Lanus. Departamento de Desarrollo Productivo y Tecnológico; Argentin

    DOTT-HEALTH: Development of text-based technology to support diagnosis, prevention and health institutions management

    Get PDF
    La combinación de datos y pautas dirigidas a pacientes individuales se engloba en los Sistemas de Apoyo a la Decisión Clínica. La adopción del Informe Clínico Electrónico de forma sistemática por parte de los sistemas de salud da lugar a una recopilación masiva de datos clínicos que los profesionales no pueden procesar, dada la limitación humana para manejar una gran cantidad de información. Esto, junto con el aumento de la capacidad de procesamiento de las máquinas, conduce a un escenario en el que el análisis automático de los Informes Clínicos Electrónicos se vuelve esencial para determinar patrones, prevenir errores, mejorar la calidad, reducir costos y ahorrar tiempo a los servicios de salud. Esta propuesta aborda dos desafíos principales: el desarrollo de tecnologías para el apoyo al diagnóstico clínico y a la prevención, y la creación de tecnologías de ayuda a la gestión de los servicios médicos. Teniendo todo esto en mente, el proyecto se enfocará en desarrollar herramientas que supongan un avance de la tecnología en los sistemas de apoyo para la toma de decisiones médicas.The combination of individual patient data and guidelines is conceptualized as clinical decision support systems. The increase in the adoption of Electronic Health Records (EHR) by healthcare systems results in a collection of massive healthcare data that practitioners, having a limited capability to deal with a big amount of information, are unable to process. This, together with the increase of machine processing capabilities, leads to a scenario where automatic analysis of Electronic Health Records becomes essential to ascertain patterns, to prevent errors, improve quality, reduce costs and save time to the Health Services. This proposal addresses two main challenges: Development of technologies to support the clinical diagnosis and prevention, and to support the management of medical services.Este trabajo ha sido financiado por el proyecto DOTT-HEALTH (MCI/AEI/FEDER,UE) con referencias PID2019-106942RBC31, PID2019-106942RB-C32, PID2019-106942RB-C33.Peer ReviewedPostprint (published version
    corecore