339 research outputs found

    Model-free Rheo-AFM probes the viscoelasticity of tunable DNA soft colloids

    Get PDF
    Atomic force microscopy rheological measurements (Rheo‐AFM) of the linear viscoelastic properties of single, charged colloids having a star‐like architecture with a hard core and an extended, deformable double‐stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model‐free Fourier transform method that allows a direct evaluation of the frequency‐dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force‐relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt‐free solution. This can be correlated to significant topological changes of the dense star‐like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona

    Performance of the ALICE Electromagnetic Calorimeter

    Get PDF
    International audienceThe performance of the electromagnetic calorimeter of theALICE experiment during operation in 2010–2018 at the Large HadronCollider is presented. After a short introduction into the design,readout, and trigger capabilities of the detector, the proceduresfor data taking, reconstruction, and validation are explained. Themethods used for the calibration and various derived corrections arepresented in detail. Subsequently, the capabilities of thecalorimeter to reconstruct and measure photons, light mesons,electrons and jets are discussed. The performance of thecalorimeter is illustrated mainly with data obtained with test beamsat the Proton Synchrotron and Super Proton Synchrotron or inproton-proton collisions at √s = 13 TeV, and compared tosimulations

    Exploring the strong interaction of three-body systems at the LHC

    No full text
    International audienceDeuterons are atomic nuclei composed of a neutron and a proton held together by the strong interaction. Unbound ensembles composed of a deuteron and a third nucleon have been investigated in the past using scattering experiments and they constitute a fundamental reference in nuclear physics to constrain nuclear interactions and the properties of nuclei. In this work K+−^{+}-d and p−-d femtoscopic correlations measured by the ALICE Collaboration in proton−-proton (pp) collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are presented. It is demonstrated that correlations in momentum space between deuterons and kaons or protons allow us to study three-hadron systems at distances comparable with the proton radius. The analysis of the K+−^{+}-d correlation shows that the relative distances at which deuterons and proton/kaons are produced are around 2 fm. The analysis of the p−-d correlation shows that only a full three-body calculation that accounts for the internal structure of the deuteron can explain the data. In particular, the sensitivity of the observable to the short-range part of the interaction is demonstrated. These results indicate that correlations involving light nuclei in pp collisions at the LHC will also provide access to any three-body systems in the strange and charm sectors

    Neutron emission in ultraperipheral Pb-Pb collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76~TeV. In addition, the cross sections for the exclusive emission of 1, 2, 3, 4 and 5 forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of Pb208 nuclei at sNN=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of Pb207,206,205,204,203, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNN\pmb {\sqrt{s_{\mathrm{{NN}}}}} = 5.02 TeV

    No full text

    Two-particle transverse momentum correlations in pp and p-Pb collisions at LHC energies

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at LHC energies, provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb--Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s=7\sqrt{s} = 7 TeV and sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed.Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s=7\sqrt{s} = 7 TeV and sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed.Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behavior. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s=7TeV and sNN=5.02TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Measurement of Ωc0\Omega^0_{\rm c} baryon production and branching-fraction ratio BR(Ωc0→Ω−e+Îœe)/BR(Ωc0→Ω−π+){\rm BR(\Omega^0_c \rightarrow \Omega^- e^+\nu_e)} / {\rm BR(\Omega^0_c \rightarrow \Omega^- \pi^+)} in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe inclusive production of the charm-strange baryon Ωc0\Omega^{0}_{\rm c} is measured for the first time via its semileptonic decay into Ω−e+Îœe\Omega^{-}\rm e^{+}\nu_{e} at midrapidity (∣y∣<0.8|y|<0.8) in proton−-proton (pp) collisions at the centre-of-mass energy s=13\sqrt{s}=13 TeV with the ALICE detector at the LHC. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 2<pT<12 GeV/c2<p_{\rm T}<12~{\rm GeV}/c. The branching-fraction ratio BR(Ωc0→Ω−e+Îœe)/BR(Ωc0→Ω−π+){\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+}) is measured to be 1.12 ±\pm 0.22 (stat.) ±\pm 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    First measurement of Λc+\Lambda_\mathrm{c}^{+} production down to pT=0p_\mathrm{T} = 0 in pp and p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV

    No full text
    The production of prompt Λc+{\mathrm {\Lambda_{c}^{+}}} baryons has been measured at midrapidity in the transverse momentum interval 0 Λc+ baryons has been measured at midrapidity in the transverse momentum interval 0<pT<1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision sNN=5.02TeV. The measurement was performed in the decay channel Λc+→pKS0 by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT-integrated Λc+ production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT-integrated nuclear modification factors RpPb and RAA of Λc+ baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Λc+/D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ) modification of the mean transverse momentum of Λc+ baryons is seen in p–Pb collisions with respect to pp collisions, while the pT-integrated Λc+/D0 yield ratio was found to be consistent between the two collision systems within the uncertainties.The production of prompt \mathrm {\Lambda_{c}^{+}}baryonshasbeenmeasuredatmidrapidityinthetransversemomentuminterval baryons has been measured at midrapidity in the transverse momentum interval 0<p_{\rm T}<1GeV/ GeV/cforthefirsttime,inppandp−Pbcollisionsatacentre−of−massenergypernucleon−nucleoncollision for the first time, in pp and p-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision \sqrt{s_\mathrm{NN}} = 5.02TeV.Themeasurementwasperformedinthedecaychannel TeV. The measurement was performed in the decay channel {\rm \Lambda_{c}^{+}\to p K^{0}_{S}}byapplyingnewdecayreconstructiontechniquesusingaKalman−Filtervertexingalgorithmandadoptingamachine−learningapproachforthecandidateselection.The by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The p_{\rm T}−integrated-integrated \mathrm {\Lambda_{c}^{+}}productioncrosssectionsinbothcollisionsystemsweredeterminedandusedalongwiththemeasuredyieldsinPb−Pbcollisionstocomputethe production cross sections in both collision systems were determined and used along with the measured yields in Pb-Pb collisions to compute the p_{\rm T}−integratednuclearmodificationfactors-integrated nuclear modification factors R_{\rm pPb}and and R_\mathrm{AA}of of \mathrm{\Lambda_{c}^{+}}baryons,whicharecomparedtomodelcalculationsthatconsidernuclearmodificationofthepartondistributionfunctions.The baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The \mathrm{\Lambda_{c}^{+}/D^0}baryon−to−mesonyieldratioisreportedforppandp−Pbcollisions.Comparisonswithmodelsthatincludemodifiedhadronisationprocessesarepresented,andtheimplicationsoftheresultsontheunderstandingofcharmhadronisationinhadroniccollisionsarediscussed.Asignificant( baryon-to-meson yield ratio is reported for pp and p-Pb collisions. Comparisons with models that include modified hadronisation processes are presented, and the implications of the results on the understanding of charm hadronisation in hadronic collisions are discussed. A significant (3.7\sigma)modificationofthemeantransversemomentumof) modification of the mean transverse momentum of \mathrm {\Lambda_{c}^{+}}baryonsisseeninp−Pbcollisionswithrespecttoppcollisions,whilethe baryons is seen in p-Pb collisions with respect to pp collisions, while the p_{\rm T}−integrated-integrated \mathrm{\Lambda_{c}^{+}/D^0}$ yield ratio was found to be consistent between the two collision systems within the uncertainties

    Systematic study of flow vector decorrelation in sNN=5.02\mathbf{\sqrt{\textit{s}_{_{\bf NN}}}=5.02} TeV Pb-Pb collisions

    No full text
    International audienceMeasurements of the pTp_{\rm T}-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} using azimuthal correlations with the ALICE experiment at the LHC are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pTp_{\rm T}-dependent flow vector fluctuations at sNN=5.02 TeV\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV} with two-particle correlations. Significant pTp_{\rm T}-dependent fluctuations of the V⃗2\vec{V}_{2} flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to ∌\sim15% being present in the 5% most central collisions. In parallel, no evidence of significant pTp_{\rm T}-dependent fluctuations of V⃗3\vec{V}_{3} or V⃗4\vec{V}_{4} is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ5\sigma significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pTp_{\rm T}, which might be biased by pTp_{\rm T}-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma (QGP) properties, and the dynamic evolution of the created system
    • 

    corecore