6 research outputs found

    Different modulation of RPS6 phosphorylation by risperidone in striatal cells sub populations: involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms in mice

    Get PDF
    Objective: Acute extrapyramidal symptoms (EPS) are frequent and serious adverse reactions to antipsychotic (AP) drugs. Although the proposed mechanism is an excessive blockade of dopamine D2 receptors in the striatopallidal pathway of the striatum, previous studies implicated the mTOR pathway in the susceptibility to EPS. The objective of the present study is to analyze the mTOR-mediated response to risperidone in subpopulations of striatal neurons and its relationship to risperidone-induced motor side effects. Methods: Two mouse strains (A/J and DBA/2J) with different susceptibility to developing EPS were treated with risperidone 1 mg/kg for three consecutive days. Here we monitored, by double labeling immunohistochemistry, ribosomal protein S6 (rpS6) phosphorylation (Ser235/236 and Ser244/247 sites), a marker of mTOR signaling, in the striatonigral pathway (D1-medium spiny neurons (MSNs)), the striatopallidal pathway (D2-MSNs) and striatal cholinergic interneurons. Results: We found that EPS-resistant DBA/2J mice show higher baseline levels of phosphoactivated rpS6 protein in striatal MSNs, compared with EPS-prone A/J mice. Moreover, risperidone differentially targeted rpS6 phosphorylation in direct and indirect pathway neurons in a strain-specific manner: a significant decrease in the phosphorylation of rpS6 at Ser235/236 and Ser240/244 in DRD1-MSNs EPS-resistant DBA/2J mice after; and a significant increase of phospho-Ser235/236-rpS6 in the striatopallidal pathway of the EPS-prone A/J mice in response to risperidone. Conclusions: Our results reveal the vital role of genetic background in the response to risperidone, and point to the mTOR pathway as an important factor in EPS susceptibility. Keywords: Schizophrenia, Antipsychotic, Risperidone, Extrapyramidal symptoms. mTOR pathway, Striatum, Medium spiny neuron

    Response to fluoxetine in children and adolescents: a weighted gene co-expression network analysis of peripheral blood

    Get PDF
    The inconclusive and non-replicated results of pharmacogenetic studies of antidepressant response could be related to the lack of acknowledgement of its mechanism of action. In this scenario, gene expression studies provide and interesting framework to reveal new candidate genes for pharmacogenetic studies or peripheral biomarkers of fluoxetine response. We propose a system biology approach to analyse changes in gene expression induced by eight weeks of treatment with fluoxetine in peripheral blood. 21 naĂŻve child and adolescents participated in the present study. Our analysis include the identification of gene co-expression modules, using Weighted Gene Co-expression Network Analysis (WGCNA), followed by protein-protein interaction (PPi) network construction coupled with functional annotation. Our results revealed two modules of co-expression genes related to fluoxetine treatment. The constructed networks from these modules were enriched for biological processes related to cellular and metabolic processes, cell communication, immune system processes, cell death, response to stimulus and neurogenesis. Some of these processes, such as immune system, replicated previous findings in the literature, whereas, neurogenesis, a mechanism proposed to be involved in fluoxetine response, had been identified for first time using peripheral tissues. In conclusion, our study identifies several biological processes in relation to fluoxetine treatment in peripheral blood, offer new candidate genes for pharmacogenetic studies and valuable markers for peripheral moderator biomarkers discovery

    Identification of EP300 as a Key Gene Involved in Antipsychotic-Induced Metabolic Dysregulation Based on Integrative Bioinformatics Analysis of Multi-Tissue Gene Expression Data

    Get PDF
    Antipsychotics (APs) are associated with weight gain and other metabolic abnormalities such as hyperglycemia, dyslipidemia and metabolic syndrome. This translational study aimed to uncover the underlying molecular mechanisms and identify the key genes involved in AP-induced metabolic effects. An integrative gene expression analysis was performed in four different mouse tissues (striatum, liver, pancreas and adipose) after risperidone or olanzapine treatment. The analytical approach combined the identification of the gene co-expression modules related to AP treatment, gene set enrichment analysis and protein-protein interaction network construction. We found several co-expression modules of genes involved in glucose and lipid homeostasis, hormone regulation and other processes related to metabolic impairment. Among these genes, EP300, which encodes an acetyltransferase involved in transcriptional regulation, was identified as the most important hub gene overlapping the networks of both APs. Then, we explored the genetically predicted EP300 expression levels in a cohort of 226 patients with first-episode psychosis who were being treated with APs to further assess the association of this gene with metabolic alterations. The EP300 expression levels were significantly associated with increases in body weight, body mass index, total cholesterol levels, low-density lipoprotein cholesterol levels and triglyceride concentrations after 6 months of AP treatment. Taken together, our analysis identified EP300 as a key gene in AP-induced metabolic abnormalities, indicating that the dysregulation of EP300 function could be important in the development of these side effects. However, more studies are needed to disentangle the role of this gene in the mechanism of action of APs. Keywords: EP300; antipsychotics; gene; gene expression; metabolic syndrome; microarray; pharmacogenetics; weight gain

    A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood.

    Get PDF
    Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse

    Neurotoxic/Neuroprotective Effects of Clozapine and the Positive Allosteric Modulator of mGluR2 JNJ-46356479 in Human Neuroblastoma Cell Cultures

    Full text link
    Current antipsychotics (APs) effectively control positive psychotic symptoms, mainly by blocking dopamine (DA) D2 receptors, but have little effect on negative and cognitive symptoms. Increased glutamate (GLU) release would trigger neurotoxicity, leading to apoptosis and synaptic pruning, which is involved in the pathophysiology of schizophrenia. New pharmacological strategies are being developed such as positive allosteric modulators (PAMs) of the metabotropic GLU receptor 2 (mGluR2) that inhibit the presynaptic release of GLU. We previously reported that treatment of adult mice with JNJ-46356479 (JNJ), a recently developed mGluR2 PAM, partially improved neuropathological deficits and schizophrenia-like behavior in a postnatal ketamine mouse model. In the present study, we evaluated, for the first time, the putative neuroprotective and antiapoptotic activity of JNJ in a human neuroblastoma cell line and compared it with the effect of clozapine (CLZ) as a clinical AP with the highest efficacy and with apparent utility in managing negative symptoms. Specifically, we measured changes in cell viability, caspase 3 activity and apoptosis, as well as in the expression of key genes involved in survival and cell death, produced by CLZ and JNJ alone and in combination with a high DA or GLU concentration as apoptosis inducers. Our results suggest that JNJ is not neurotoxic and attenuates apoptosis, particularly by decreasing the caspase 3 activation induced by DA and GLU, as well as increasing and decreasing the number of viable and apoptotic cells, respectively, only when cultures were exposed to GLU. Its effects seem to be less neurotoxic and more neuroprotective than those observed with CLZ. Moreover, JNJ partially normalized altered expression levels of glycolytic genes, which could act as a protective factor and be related to its putative neuroprotective effect. More studies are needed to define the mechanisms of action of this GLU modulator and its potential to become a novel therapeutic agent for schizophrenia
    corecore