55,400 research outputs found
Real space mapping of topological invariants using artificial neural networks
Topological invariants allow to characterize Hamiltonians, predicting the
existence of topologically protected in-gap modes. Those invariants can be
computed by tracing the evolution of the occupied wavefunctions under twisted
boundary conditions. However, those procedures do not allow to calculate a
topological invariant by evaluating the system locally, and thus require
information about the wavefunctions in the whole system. Here we show that
artificial neural networks can be trained to identify the topological order by
evaluating a local projection of the density matrix. We demonstrate this for
two different models, a 1-D topological superconductor and a 2-D quantum
anomalous Hall state, both with spatially modulated parameters. Our neural
network correctly identifies the different topological domains in real space,
predicting the location of in-gap states. By combining a neural network with a
calculation of the electronic states that uses the Kernel Polynomial Method, we
show that the local evaluation of the invariant can be carried out by
evaluating a local quantity, in particular for systems without translational
symmetry consisting of tens of thousands of atoms. Our results show that
supervised learning is an efficient methodology to characterize the local
topology of a system.Comment: 9 pages, 6 figure
Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer
We describe an infrared transmission study of a thin layer of bulk graphite
in magnetic fields up to B = 34 T. Two series of absorption lines whose energy
scales as sqrtB and B are present in the spectra and identified as
contributions of massless holes at the H point and massive electrons in the
vicinity of the K point, respectively. We find that the optical response of the
K point electrons corresponds, over a wide range of energy and magnetic field,
to a graphene bilayer with an effective inter-layer coupling 2\gamma_1, twice
the value for a real graphene bilayer, which reflects the crystal ordering of
bulk graphite along the c-axis. The K point electrons thus behave as massive
Dirac fermions with a mass enhanced twice in comparison to a true graphene
bilayer.Comment: 4 pages, 2 figure
Dynamical generation of wormholes with charged fluids in quadratic Palatini gravity
The dynamical generation of wormholes within an extension of General
Relativity (GR) containing (Planck's scale-suppressed) Ricci-squared terms is
considered. The theory is formulated assuming the metric and connection to be
independent (Palatini formalism) and is probed using a charged null fluid as a
matter source. This has the following effect: starting from Minkowski space,
when the flux is active the metric becomes a charged Vaidya-type one, and once
the flux is switched off the metric settles down into a static configuration
such that far from the Planck scale the geometry is virtually indistinguishable
from that of the standard Reissner-Nordstr\"om solution of GR. However, the
innermost region undergoes significant changes, as the GR singularity is
generically replaced by a wormhole structure. Such a structure becomes
completely regular for a certain charge-to-mass ratio. Moreover, the nontrivial
topology of the wormhole allows to define a charge in terms of lines of force
trapped in the topology such that the density of lines flowing across the
wormhole throat becomes a universal constant. To the light of our results we
comment on the physical significance of curvature divergences in this theory
and the topology change issue, which support the view that space-time could
have a foam-like microstructure pervaded by wormholes generated by quantum
gravitational effects.Comment: 14 pages, 3 figures, revtex4-1 style. New content added on section
VI. Other minor corrections introduced. Final version to appear in Phys. Rev.
Information mobility in complex networks
The concept of information mobility in complex networks is introduced on the basis of a stochastic process taking place in the network. The transition matrix for this process represents the probability that the information arising at a given node is transferred to a target one. We use the fractional powers of this transition matrix to investigate the stochastic process at fractional time intervals. The mobility coefficient is then introduced on the basis of the trace of these fractional powers of the stochastic matrix. The fractional time at which a network diffuses 50% of the information contained in its nodes (1/ k50 ) is also introduced. We then show that the scale-free random networks display better spread of information than the non scale-free ones. We study 38 real-world networks and analyze their performance in spreading information from their nodes. We find that some real-world networks perform even better than the scale-free networks with the same average degree and we point out some of the structural parameters that make this possible
Renormalization Group and Grand Unification with 331 Models
By making a renormalization group analysis we explore the possibility of
having a 331 model as the only intermediate gauge group between the standard
model and the scale of unification of the three coupling constants. We shall
assume that there is no necessarily a group of grand unification at the scale
of convergence of the couplings. With this scenario, different 331 models and
their corresponding supersymmetric versions are considered, and we find the
versions that allow the symmetry breaking described above. Besides, the allowed
interval for the 331 symmetry breaking scale, and the behavior of the running
coupling constants are obtained. It worths saying that some of the
supersymmetric scenarios could be natural frameworks for split supersymmetry.
Finally, we look for possible 331 models with a simple group at the grand
unification scale, that could fit the symmetry breaking scheme described above.Comment: 18 pages. 3 figures. Some results reinterpreted, a new section and
references added. Version to appear in International Journal of Modern
Physics
Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon
Tight-binding molecular dynamics simulations shed light into the fracture
mechanisms and the ideal strength of tetrahedral amorphous carbon and of
nanocomposite carbon containing diamond crystallites, two of the hardest
materials. It is found that fracture in the nanocomposites, under tensile or
shear load, occurs inter-grain and so their ideal strength is similar to the
pure amorphous phase. The onset of fracture takes place at weakly bonded sp^3
sites in the amorphous matrix. On the other hand, the nanodiamond inclusions
significantly enhance the elastic moduli, which approach those of diamond.Comment: 6 pages, 4 figure
Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps
The problem of detecting Sunyaev-Zel'dovich (SZ) clusters in multifrequency
CMB observations is investigated using a number of filtering techniques. A
multifilter approach is introduced, which optimizes the detection of SZ
clusters on microwave maps. An alternative method is also investigated, in
which maps at different frequencies are combined in an optimal manner so that
existing filtering techniques can be applied to the single combined map. The SZ
profiles are approximated by the circularly-symmetric template , with and , where the core radius and the overall amplitude of the effect
are not fixed a priori, but are determined from the data. The background
emission is modelled by a homogeneous and isotropic random field, characterized
by a cross-power spectrum with . The
filtering methods are illustrated by application to simulated Planck
observations of a patch of sky in 10 frequency
channels. Our simulations suggest that the Planck instrument should detect
SZ clusters in 2/3 of the sky. Moreover, we find the catalogue
to be complete for fluxes mJy at 300 GHz.Comment: 12 pages, 7 figures; Corrected figures. Submitted to MNRA
Discovery of unusual pulsations in the cool, evolved Am stars HD 98851 and HD 102480
The chemically peculiar (CP) stars HD 98851 and HD 102480 have been
discovered to be unusual pulsators during the ``Naini Tal Cape Survey''
programme to search for pulsational variability in CP stars. Time series
photometric and spectroscopic observations of these newly discovered stars are
reported here. Fourier analyses of the time series photometry reveal that HD
98851 is pulsating mainly with frequencies 0.208 mHz and 0.103 mHz, and HD
102480 is pulsating with frequencies 0.107 mHz, 0.156 mHz and 0.198 mHz. The
frequency identifications are all subject to 1 d cycle count
ambiguities. We have matched the observed low resolution spectra of HD 98851
and HD 102480 in the range 3500-7400 \AA with theoretical synthetic spectra
using Kurucz models with solar metallicity and a micro-turbulent velocity 2 km
s. These yield K, log for HD 98851
and K, log for HD 102480. We
determined the equivalent H-line spectral class of these stars to be F1 IV and
F3 III/IV, respectively. A comparison of the location of HD 98851 and HD 102480
in the HR diagram with theoretical stellar evolutionary tracks indicates that
both stars are about 1-Gyr-old, 2- stars that lie towards the red
edge of the Sct instability strip. We conclude that HD 98851 and HD
102480 are cool, evolved Am pulsators. The light curves of these pulsating
stars have alternating high and low amplitudes, nearly harmonic (or
sub-harmonic) period ratios, high pulsational overtones and Am spectral types.
This is unusual for both Am and Sct pulsators, making these stars
interesting objects.Comment: 9 pages, 6 Figures, Accepted for publication in MNRA
- …
