research

Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps

Abstract

The problem of detecting Sunyaev-Zel'dovich (SZ) clusters in multifrequency CMB observations is investigated using a number of filtering techniques. A multifilter approach is introduced, which optimizes the detection of SZ clusters on microwave maps. An alternative method is also investigated, in which maps at different frequencies are combined in an optimal manner so that existing filtering techniques can be applied to the single combined map. The SZ profiles are approximated by the circularly-symmetric template τ(x)=[1+(x/rc)2]λ\tau (x) = [1 +(x/r_c)^2]^{-\lambda}, with λ12\lambda \simeq \tfrac{1}{2} and xxx\equiv |\vec{x}|, where the core radius rcr_c and the overall amplitude of the effect are not fixed a priori, but are determined from the data. The background emission is modelled by a homogeneous and isotropic random field, characterized by a cross-power spectrum Pν1ν2(q)P_{\nu_1 \nu_2}(q) with qqq\equiv |\vec{q}|. The filtering methods are illustrated by application to simulated Planck observations of a 12.8×12.812.8^\circ \times 12.8^\circ patch of sky in 10 frequency channels. Our simulations suggest that the Planck instrument should detect 10000\approx 10000 SZ clusters in 2/3 of the sky. Moreover, we find the catalogue to be complete for fluxes S>170S > 170 mJy at 300 GHz.Comment: 12 pages, 7 figures; Corrected figures. Submitted to MNRA

    Similar works

    Available Versions

    Last time updated on 03/12/2019