We describe an infrared transmission study of a thin layer of bulk graphite
in magnetic fields up to B = 34 T. Two series of absorption lines whose energy
scales as sqrtB and B are present in the spectra and identified as
contributions of massless holes at the H point and massive electrons in the
vicinity of the K point, respectively. We find that the optical response of the
K point electrons corresponds, over a wide range of energy and magnetic field,
to a graphene bilayer with an effective inter-layer coupling 2\gamma_1, twice
the value for a real graphene bilayer, which reflects the crystal ordering of
bulk graphite along the c-axis. The K point electrons thus behave as massive
Dirac fermions with a mass enhanced twice in comparison to a true graphene
bilayer.Comment: 4 pages, 2 figure