330 research outputs found

    Diabetes-specific enteral nutrition formula in hyperglycemic, mechanically ventilated, critically ill patients: a prospective, open-label, blind-randomized, multicenter study

    Get PDF
    Introduction: Although standard enteral nutrition is universally accepted, the use of disease-specific formulas for hyperglycemic patients is still controversial. This study examines whether a high-protein diabetes-specific formula reduces insulin needs, improves glycemic control and reduces ICU-acquired infection in critically ill, hyperglycemic patients on mechanical ventilation (MV). Methods: This was a prospective, open-label, randomized (web-based, blinded) study conducted at nine Spanish ICUs. The patient groups established according to the high-protein formula received were: group A, newgeneration diabetes-specific formula; group B, standard control formula; group C, control diabetes-specific formula. Inclusion criteria were: expected enteral nutrition >= 5 days, MV, baseline glucose > 126 mg/dL on admission or > 200 mg/dL in the first 48 h. Exclusion criteria were: APACHE II = 40 kg/m(2). The targeted glucose level was 110-150 mg/dL. Glycemic variability was calculated as the standard deviation, glycemic lability index and coefficient of variation. Acquired infections were recorded using published consensus criteria for critically ill patients. Data analysis was on an intention-to-treat basis. Results: Over a 2-year period, 157 patients were consecutively enrolled (A 52, B 53 and C 52). Compared with the standard control formula, the new formula gave rise to lower insulin requirement (19.1 +/- 13.1 vs. 23.7 +/- 40.1 IU/day, p < 0.05), plasma glucose (138.6 +/- 39.1 vs. 146.1 +/- 49.9 mg/dL, p < 0.01) and capillary blood glucose (146.1 +/- 45.8 vs. 155.3 +/- 63.6 mg/dL, p < 0.001). Compared with the control diabetes-specific formula, only capillary glucose levels were significantly reduced (146.1 +/- 45.8 vs. 150.1 +/- 41.9, p < 0.01). Both specific formulas reduced capillary glucose on ICU day 1 (p < 0.01), glucose variability in the first week (p < 0.05), and incidences of ventilator-associated tracheobronchitis (p < 0.01) or pneumonia (p < 0.05) compared with the standard formula. No effects of the nutrition formula were produced on hospital stay or mortality. Conclusions: In these high-risk ICU patients, both diabetes-specific formulas lowered insulin requirements, improved glycemic control and reduced the risk of acquired infections relative to the standard formula. Compared with the control-specific formula, the new-generation formula also improved capillary glycemia

    Multi-parameter flow cytometry immunophenotyping distinguishes different stages of tuberculosis infection

    Get PDF
    Objectives: To identify new potential host biomarkers in blood to discriminate between active TB patients, uninfected (NoTBI) and latently infected contacts (LTBI). Methods: A blood cell count was performed to study parent leukocyte populations. Peripheral blood mononuclear cells (PBMCs) were isolated and a multi-parameter flow cytometry assay was conducted to study the distribution of basal and Mycobacterium tuberculosis (Mtb)-stimulated lymphocytes. Differences between groups and the area under the ROC curve (AUC) were investigated to assess the diagnostic accuracy. Results: Active TB patients presented higher Monocyte-to-lymphocyte and Neutrophil-to-lymphocyte ratios than LTBI and NoTBI contacts (p0.8). Lymphocyte subsets with differences (p >0.05; AUC >0.7) between active TB and both contact groups include the basal distribution of Th1/Th2 ratio, Th1-Th17, CD4+ Central Memory (TCM) or MAIT cells. Expression of CD154 is increased in Mtb-activated CD4+ TCM and Effector Memory T cells in active TB and LTBI compared to NoTBI. In CD4+T cells, expression of CD154 showed a higher accuracy than IFNγ to discriminate Mtb-specific activation. Conclusions: We identified different cell subsets with potential use in tuberculosis diagnosis. Among them, distribution of CD4 TCM cells and their expression of CD154 after Mtb-activation are the most promising candidates.Xunta de Galicia | Ref. ED431C 2016/04

    Senescence-associated proteolysis induced by abiotic and biotic stresses in barley leaves

    Get PDF
    Leaf senescence is a recycling process characterized by a massive degradation of macromolecules to relocalize nutrients from leaves to growing or storage tissues. Our aim is to identify and analyze the C1A Cysteine ‐Protease (CysProt) family members from barley (35 cathepsin L‐,3B‐,1Hand3F‐like) involved in leaf senescence, to study their modulation by their specific inhibitors (cystatins) and to determine their roles mediated by abiotic (darkness and N starvation) and biotic (pathogens and pest) stresses

    New approaches for the identification of KChIP2 ligands to study the KV4.3 channelosome in atrial fibrillati

    Get PDF
    Resumen del trabajo presentado en el VIII Congreso Red Española de Canales iónico, celebrado en Alicante (España) del 24 al 27 de mayo de 2022.Ion channels are macromolecular complexes present in the plasma membrane and in intracellular organelles of the cells, where they play important functions. The dysfunction of these channels results in several disorders named channelopathies, which represent a challenge for study and treatment.[1] We are focused on voltage-gated potassium channels, specifically on KV4.3. Kv4.3 is expressed in smooth muscle, heart and brain. Within the heart, Kv4.3 channels generate the transient outward potassium current (ITO). However, ITO characteristics are only observed when Kv4.3 assemble with accessory subunits as KChIP2 and DPP6. KV4.3 channelosome play a key role in atrial fibrillation (AF),the most common cardiac arrhythmia, with an estimated prevalence in the general population of 1.5–2%. However, current antiarrhythmic drugs for AF prevention have limited efficacy and considerable potential for adverse effects.[2] KChIP2 (Potassium Channel Interacting Protein 2) belongs to the calcium binding protein superfamily. It is the KChIP member predominantly expressed in heart and a key regulator of cardiac action potential duration. The identification of novel KChIP2 ligands could be useful to understand the role of KV4.3 channelosome in AF and it could help to discover new treatments for AF. [3] In this regard, structure-based virtual screening could be an important tool to accelerate the identification of novel KChIP2 ligands. In this communication, we will describe a multidisciplinary approach that, starting with a structurebased virtual screening, followed by an iterative process of synthesis/biological evaluation/docking studies, has led to the identification of new KChIP2 ligands.PID2019-104366RB-C21, PID2019-104366RB-C22, PID2020-114256RB-I00 and PID2020-119805RB-I00 grants funded by MCIN/AEI/10.13039/501100011033; and PIE202180E073 and 2019AEP148 funded by CSIC. C.V.B. holds PRE2020-093542 FPI grant funded by MCIN/AEI/10.13039/501100011033. PGS was recipient of an FPU grant (FPU17/02731). AB-B holds BES-2017-080184 FPI grant and A.P-L.holds RYC2018-023837-I grant both funded by MCIN/ AEI/ 10.13039/501100011033 and by “ESF Investing in your future

    New approaches for the identification of KChIP2 ligands to study the KV4.3 channelosome in atrial fibrillati

    Get PDF
    Resumen del trabajo presentado en el VIII Congreso Red Española de Canales iónico, celebrado en Alicante (España) del 24 al 27 de mayo de 2022.Ion channels are macromolecular complexes present in the plasma membrane and in intracellular organelles of the cells, where they play important functions. The dysfunction of these channels results in several disorders named channelopathies, which represent a challenge for study and treatment.[1] We are focused on voltage-gated potassium channels, specifically on KV4.3. Kv4.3 is expressed in smooth muscle, heart and brain. Within the heart, Kv4.3 channels generate the transient outward potassium current (ITO). However, ITO characteristics are only observed when Kv4.3 assemble with accessory subunits as KChIP2 and DPP6. KV4.3 channelosome play a key role in atrial fibrillation (AF),the most common cardiac arrhythmia, with an estimated prevalence in the general population of 1.5–2%. However, current antiarrhythmic drugs for AF prevention have limited efficacy and considerable potential for adverse effects.[2] KChIP2 (Potassium Channel Interacting Protein 2) belongs to the calcium binding protein superfamily. It is the KChIP member predominantly expressed in heart and a key regulator of cardiac action potential duration. The identification of novel KChIP2 ligands could be useful to understand the role of KV4.3 channelosome in AF and it could help to discover new treatments for AF. [3] In this regard, structure-based virtual screening could be an important tool to accelerate the identification of novel KChIP2 ligands. In this communication, we will describe a multidisciplinary approach that, starting with a structurebased virtual screening, followed by an iterative process of synthesis/biological evaluation/docking studies, has led to the identification of new KChIP2 ligands.PID2019-104366RB-C21, PID2019-104366RB-C22, PID2020-114256RB-I00 and PID2020-119805RB-I00 grants funded by MCIN/AEI/10.13039/501100011033; and PIE202180E073 and 2019AEP148 funded by CSIC. C.V.B. holds PRE2020-093542 FPI grant funded by MCIN/AEI/10.13039/501100011033. PGS was recipient of an FPU grant (FPU17/02731). AB-B holds BES-2017-080184 FPI grant and A.P-L.holds RYC2018-023837-I grant both funded by MCIN/ AEI/ 10.13039/501100011033 and by “ESF Investing in your future

    Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus

    Get PDF
    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species

    Cellular and humoral immunogenicity of the mRNA-1273 SARS-CoV-2 vaccine in patients with hematologic malignancies

    Get PDF
    Recent studies have shown a suboptimal humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients diagnosed with hematologic malignancies; however, data about cellular immunogenicity are scarce. The aim of this study was to evaluate both the humoral and cellular immunogenicity 1 month after the second dose of the mRNA-1273 vaccine. Antibody titers were measured by using the Elecsys and LIAISON anti–SARS-CoV-2 S assays, and T-cell response was assessed by using interferon-γ release immunoassay technology. Overall, 76.3% (184 of 241) of patients developed humoral immunity, and the cellular response rate was 79% (184 of 233). Hypogammaglobulinemia, lymphopenia, active hematologic treatment, and anti-CD20 therapy during the previous 6 months were associated with an inferior humoral response. Conversely, age >65 years, active disease, lymphopenia, and immunosuppressive treatment of graft-versus-host disease (GVHD) were associated with an impaired cellular response. A significant dissociation between the humoral and cellular responses was observed in patients treated with anti-CD20 therapy (the humoral response was 17.5%, whereas the cellular response was 71.1%). In these patients, B-cell aplasia was confirmed while T-cell counts were preserved. In contrast, humoral response was observed in 77.3% of patients undergoing immunosuppressive treatment of GVHD, whereas only 52.4% had a cellular response. The cellular and humoral responses to the SARS-CoV-2 mRNA-1273 vaccine in patients with hematologic malignancies are highly influenced by the presence of treatments such as anti-CD20 therapy and immunosuppressive agents. This observation has implications for the further management of these patients.The authors also thank the Cellex Foundation for providing research facilities and equipment and the CERCA Programme/Generalitat de Catalunya for institutional support

    Conservation and variability of hepatitis B core at different chronic hepatitis stages

    Get PDF
    Since it is currently not possible to eradicate hepatitis B virus (HBV) infection with existing treatments, research continues to uncover new therapeutic strategies. HBV core protein, encoded by the HBV core gene (HBC), intervenes in both structural and functional processes, and is a key protein in the HBV life cycle. For this reason, both the protein and the gene could be valuable targets for new therapeutic and diagnostic strategies. Moreover, alterations in the protein sequence could serve as potential markers of disease progression. To detect, by next-generation sequencing, HBC hyper-conserved regions that could potentially be prognostic factors and targets for new therapies. Thirty-eight of 45 patients with chronic HBV initially selected were included and grouped according to liver disease stage [chronic hepatitis B infection without liver damage (CHB, n = 16), liver cirrhosis (LC, n = 5), and hepatocellular carcinoma (HCC, n = 17)]. HBV DNA was extracted from patients' plasma. A region between nucleotide (nt) 1863 and 2483, which includes HBC, was amplified and analyzed by next-generation sequencing (Illumina MiSeq platform). Sequences were genotyped by distance-based discriminant analysis. General and intergroup nt and amino acid (aa) conservation was determined by sliding window analysis. The presence of nt insertion and deletions and/or aa substitutions in the different groups was determined by aligning the sequences with genotype-specific consensus sequences. Three nt (nt 1900-1929, 2249-2284, 2364-2398) and 2 aa (aa 117-120, 159-167) hyper-conserved regions were shared by all the clinical groups. All groups showed a similar pattern of conservation, except for five nt regions (nt 1946-1992, 2060-2095, 2145-2175, 2230-2250, 2270-2293) and one aa region (aa 140-160), where CHB and LC, respectively, were less conserved (P < 0.05). Some group-specific conserved regions were also observed at both nt (2306-2334 in CHB and 1935-1976 and 2402-2435 in LC) and aa (between aa 98-103 in CHB and 28-30 and 51-54 in LC) levels. No differences in insertion and deletions frequencies were observed. An aa substitution (P79Q) was observed in the HCC group with a median (interquartile range) frequency of 15.82 (0-78.88) vs 0 (0-0) in the other groups (P < 0.05 vs CHB group). The differentially conserved HBC and HBV core protein regions and the P79Q substitution could be involved in disease progression. The hyper-conserved regions detected could be targets for future therapeutic and diagnostic strategies

    COVID-19 Clinical Profile in Latin American Migrants Living in Spain: Does the Geographical Origin Matter?

    Get PDF
    COVID-19; Latin America; SeverityCOVID-19; Amèrica Llatina; GravetatCOVID-19; América Latina; GravedadThe aim of this study was to describe and compare the clinical characteristics of hospitalized patients with COVID-19 pneumonia according to their geographical origin. This is a retrospective case-control study of hospitalized patients with confirmed COVID-19 pneumonia treated at Vall d’Hebron University Hospital (Barcelona) during the first wave of the pandemic. Cases were defined as patients born in Latin America and controls were randomly selected among Spanish patients matched by age and gender. Demographic and clinical variables were collected, including comorbidities, symptoms, vital signs and analytical parameters, intensive care unit admission and outcome at 28 days after admission. Overall, 1080 hospitalized patients were registered: 774 (71.6%) from Spain, 142 (13.1%) from Latin America and the rest from other countries. Patients from Latin America were considered as cases and 558 Spanish patients were randomly selected as controls. Latin American patients had a higher proportion of anosmia, rhinorrhea and odynophagia, as well as higher mean levels of platelets and lower mean levels of ferritin than Spanish patients. No differences were found in oxygen requirement and mortality at 28 days after admission, but there was a higher proportion of ICU admissions (28.2% vs. 20.2%, p = 0.0310). An increased proportion of ICU admissions were found in patients from Latin America compared with native Spanish patients when adjusted by age and gender, with no significant differences in in-hospital mortality.Isabel Campos-Varela’s research activity is funded by grant PI19/00330 from Instituto de Salud Carlos III. CIBERehd is supported by Instituto de Salud Carlos III. The work was independent of all funding. This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

    Sophisticated viral quasispecies with a genotype-related pattern of mutations in the hepatitis B X gene of HBeAg-ve chronically infected patients

    Get PDF
    Haplotipos; Enfermedades infecciosas; MutaciónHaplotips; Enfermetats infeccioses; MutacióHaplotypes; Infectious diseases; MutationPatients with HBeAg-negative chronic infection (CI) have not been extensively studied because of low viremia. The HBx protein, encoded by HBX, has a key role in viral replication. Here, we analyzed the viral quasispecies at the 5′ end of HBX in CI patients and compared it with that of patients in other clinical stages. Fifty-eight HBeAg-negative patients were included: 16 CI, 19 chronic hepatitis B, 16 hepatocellular carcinoma and 6 liver cirrhosis. Quasispecies complexity and conservation were determined in the region between nucleotides 1255 and 1611. Amino acid changes detected were tested in vitro. CI patients showed higher complexity in terms of mutation frequency and nucleotide diversity and higher quasispecies conservation (p < 0.05). A genotype D-specific pattern of mutations (A12S/P33S/P46S/T36D-G) was identified in CI (median frequency, 81.7%), which determined a reduction in HBV DNA release of up to 1.5 log in vitro. CI patients showed a more complex and conserved viral quasispecies than the other groups. The genotype-specific pattern of mutations could partially explain the low viremia observed in these patients.This study was supported by grants from the Institute of Health Carlos III (grant PI15/00856 and PI18/01436) and co-financed by the European Regional Development Fund (ERDF)
    corecore