48,455 research outputs found

    Gamma-Ray Bursts Black hole accretion disks as a site for the vp-process

    Full text link
    We study proton rich nucleosynthesis in windlike outflows from gamma-ray bursts accretion disks with the aim to determine if such outflows are a site of the vp-process. The efficacy of this vp-process depends on thermodynamic and hydrodynamic factors. We discuss the importance of the entropy of the material, the outflow rate, the initial ejection point and accretion rate of the disk. In some cases the vp-process pushes the nucleosynthesis out to A~100 and produces light p-nuclei. However, even when these nuclei are not produced, neutrino induced interactions can significantly alter the abundance pattern and cannot be neglected.Comment: 9 pages, 16 figures, accepted for publication in Phys. Rev.

    Valence instability of cerium under pressure in the Kondo-like perovskite La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3

    Full text link
    Effect of hydrostatic pressure and magnetic field on electrical resistance of the Kondo-like perovskite manganese oxide, La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3 with a ferrimagnetic ground state, have been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments undergo double exchange mediated ferromagnetic ordering at TCT_{\rm C} ∼\sim 280 K and there is a resistance maximum, TmaxT_{\rm max} at about 130 K which is correlated with an antiferromagnetic ordering of {\it cerium} with respect to the Mn-sublattice moments. Under pressure, the TmaxT_{\rm max} shifts to lower temperature at a rate of dTmaxT_{max}/dPP = -162 K/GPa and disappears at a critical pressure PcP_{\rm c} ∼\sim 0.9 GPa. Further, the coefficient, mm of −logT-logT term due to Kondo scattering decreases linearly with increase of pressure showing an inflection point in the vicinity of PcP_{\rm c}. These results suggest that {\it cerium} undergoes a transition from Ce3+^{3+} state to Ce4+^{4+}/Ce3+^{3+} mixed valence state under pressure. In contrast to pressure effect, the applied magnetic field shifts TmaxT_{\rm max} to higher temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun

    Atomic resolution mapping of phonon excitations in STEM-EELS experiments

    Full text link
    Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberrationcorrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalised due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localisation of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space

    New measurements of magnetic fields of roAp stars with FORS1 at the VLT

    Full text link
    Magnetic fields play a key role in the pulsations of rapidly oscillating Ap (roAp) stars since they are a necessary ingredient of all pulsation excitation mechanisms proposed so far. This implies that the proper understanding of the seismological behaviour of the roAp stars requires knowledge of their magnetic fields. However, the magnetic fields of the roAp stars are not well studied. Here we present new results of measurements of the mean longitudinal field of 14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the VLT.Comment: 5 pages, accepted for publication in A&

    High energy neutrino oscillation at the presence of the Lorentz Invariance Violation

    Full text link
    Due to quantum gravity fluctuations at the Planck scale, the space-time manifold is no longer continuous, but discretized. As a result the Lorentz symmetry is broken at very high energies. In this article, we study the neutrino oscillation pattern due to the Lorentz Invariance Violation (LIV), and compare it with the normal neutrino oscillation pattern due to neutrino masses. We find that at very high energies, neutrino oscillation pattern is very different from the normal one. This could provide an possibility to study the Lorentz Invariance Violation by measuring the oscillation pattern of very high energy neutrinos from a cosmological distance.Comment: 11 pages, 6 figure

    Bose-Einstein Condensation of 88^{88}Sr Through Sympathetic Cooling with 87^{87}Sr

    Get PDF
    We report Bose-Einstein condensation of 88^{88}Sr, which has a small, negative s-wave scattering length (a88=−2a_{88}=-2\,a0a_0). We overcome the poor evaporative cooling characteristics of this isotope by sympathetic cooling with 87^{87}Sr atoms. 87^{87}Sr is effective in this role in spite of the fact that it is a fermion because of the large ground state degeneracy arising from a nuclear spin of I=9/2I=9/2, which reduces the impact of Pauli blocking of collisions. We observe a limited number of atoms in the condensate (Nmax≈104N_{max}\approx 10^4) that is consistent with the value of a88a_{88} and the optical dipole trap parameters.Comment: 4 pages, 4 figure

    Charged-current interactions for muon neutrinos in supernova

    Get PDF

    Testing Relativity at High Energies Using Spaceborne Detectors

    Get PDF
    (ABRIDGED) The Gamma-ray Large Area Space Telescope (GLAST) will measure the spectra of distant extragalactic sources of high energy gamma-rays. GLAST can look for energy dependent propagation effects from such sources as a signal of Lorentz invariance violation (LIV). Such sources should also exhibit high energy spectral cutoffs from pair production interactions with low energy photons. The properties of such cutoffs can also be used to test LIV. Detectors to measure gamma-ray polarization can look for the depolarizing effect of space-time birefingence predicted by loop quantum gravity. A spaceborne detector array looking down on Earth to study extensive air showers produced by ultrahigh energy cosmic rays can study their spectral properties and look for a possible deviation from the predicted GZK effect as another signal of LIV.Comment: 14 pages, Text of invitated talk presented at the "From Quantum to Cosmos: Fundamental Physics Studies from Space" meeting. More references adde
    • …
    corecore