21 research outputs found

    Estudo prévio de uma unidade industrial para produção de vinagrete sólido

    Get PDF
    Este trabalho consiste num estudo prévio tendo em vista o projeto de uma unidade industrial para a produção de vinagrete sólido. O produto em causa, o vinagrete sólido, assume-se como inovador, colocando-se como uma alternativa fácil para o tempero de saladas e potenciando novos sabores agradáveis ao paladar que cativem o consumidor. O trabalho inclui o estudo do processo, com descrição das etapas de preparação, os balanços mássicos, a descrição das peças de equipamento, a implantação fabril e uma breve estimativa do investimento necessário

    Synthesis, characterization, and photocatalytic activity of pure and N-, B-, or Ag- Doped TiO2

    Get PDF
    This article reports the synthesis and characterization of pure and N-, B-, and Ag-doped TiO2 and the ability of these oxides to photodegrade methylene blue (MB) under sunlight or UV-ABC radiation. The compounds were synthesized using the sol-gel method and characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Photocatalytic efficiency was significantly increased by N-doping, resulting in 98% MB decomposition under UV-ABC irradiation for 180 min. Ag- and B-doped TiO2 lowered MB degradation rates to 52 and 73%, respectively, compared with pure TiO2. The same behavior was observed with exposure to UV-Vis, with 88, 65, 60, and 42% MB removal with N-doped, pure, B-doped, and Ag-doped TiO2, respectively. Under visible light alone, N-doped TiO2 exhibited higher photocatalytic efficiency than commercial P25-type TiO2. Photocatalysis with N-doped TiO2 proved to be a promising alternative for MB degradation, given the potential of employing solar energy, thus minimizing operating costs

    Environmental Implications of a Stabilization Pond Effluent Released in Paraná River at Ilha Solteira, Brazil: The Quality of Water and Sediment

    Get PDF
    Sewage treatment plants in Ilha Solteira City, which consist of stabilization ponds, have been modifying water and sediment characteristics around sewage outfall area. Water quality parameters such as dissolved oxygen (OD) and conductivity were directly influenced by the sewage outfall. OD values were reported before (6.36 mg L-1) and after (2.94 mg L-1) the sewage outfall. Measurement of organic matter content in the sediment showed the same pattern, with values of 1.34% and 4.80% for the SP1 and SP3 samples, respectively. A copper and zinc analysis indicated that metals are being transported through the water column, and SP3 is an important sedimentation zone. The total concentrations reported for copper are 6.48, 26.97, 37.54, 27.12 and 18.55 mg kg-1 for SP1, SP2, SP3, SP4 and SP5, respectively, and the total concentrations for zinc are 11.21, 48.53, 67.41, 58.62 and 24.76 mg kg-1. Bureau Community of Reference (BCR) sequential extraction indicated the following bioavailability order of copper and zinc: SP1 < SP5 < SP4 < SP3 < SP2. At SP2, more than 70% of the copper and zinc is found in bioavailable fractions. Benthic organism’s analysis indicates that the Oligochaetes correlation with organic matter content is related to the decrease in water quality. DOI: http://dx.doi.org/10.17807/orbital.v7i4.77

    Correction to: Two years later: Is the SARS-CoV-2 pandemic still having an impact on emergency surgery? An international cross-sectional survey among WSES members

    Get PDF
    Background: The SARS-CoV-2 pandemic is still ongoing and a major challenge for health care services worldwide. In the first WSES COVID-19 emergency surgery survey, a strong negative impact on emergency surgery (ES) had been described already early in the pandemic situation. However, the knowledge is limited about current effects of the pandemic on patient flow through emergency rooms, daily routine and decision making in ES as well as their changes over time during the last two pandemic years. This second WSES COVID-19 emergency surgery survey investigates the impact of the SARS-CoV-2 pandemic on ES during the course of the pandemic. Methods: A web survey had been distributed to medical specialists in ES during a four-week period from January 2022, investigating the impact of the pandemic on patients and septic diseases both requiring ES, structural problems due to the pandemic and time-to-intervention in ES routine. Results: 367 collaborators from 59 countries responded to the survey. The majority indicated that the pandemic still significantly impacts on treatment and outcome of surgical emergency patients (83.1% and 78.5%, respectively). As reasons, the collaborators reported decreased case load in ES (44.7%), but patients presenting with more prolonged and severe diseases, especially concerning perforated appendicitis (62.1%) and diverticulitis (57.5%). Otherwise, approximately 50% of the participants still observe a delay in time-to-intervention in ES compared with the situation before the pandemic. Relevant causes leading to enlarged time-to-intervention in ES during the pandemic are persistent problems with in-hospital logistics, lacks in medical staff as well as operating room and intensive care capacities during the pandemic. This leads not only to the need for triage or transferring of ES patients to other hospitals, reported by 64.0% and 48.8% of the collaborators, respectively, but also to paradigm shifts in treatment modalities to non-operative approaches reported by 67.3% of the participants, especially in uncomplicated appendicitis, cholecystitis and multiple-recurrent diverticulitis. Conclusions: The SARS-CoV-2 pandemic still significantly impacts on care and outcome of patients in ES. Well-known problems with in-hospital logistics are not sufficiently resolved by now; however, medical staff shortages and reduced capacities have been dramatically aggravated over last two pandemic years

    Characterization of Corn (Zea mays) Leaf Powder and Its Adsorption Properties Regarding Cu(II) and Cd(II) from Aqueous Samples

    No full text
    In this study, a green adsorbent made of corn leaf powder was applied in the removal of Cu(II) and Cd(II) from water samples. The material was characterized by Fourier transform infrared (FTIR) spectroscopy, which indicated the existence of amine (1375 and 1249 cm-1) and carboxylic groups (1730 cm-1). Elemental analysis corroborated the results of FTIR, indicating that the substance consisted of 0.63% sulfur and 0.46% nitrogen. The NMR results indicated that thiamine and methionine may be present in the corn leaf substances, which can act in coordination with metal species. Scanning electron microscopy (SEM) indicated the existence of pores of approximately 15 µm in diameter and a homogeneous particle size. Equilibrium adsorption was attained in 5 min, and the obtained data were applied to a pseudo-second-order kinetic model (r2 = 0.999 for Cu(II) and Cd(II)). Selective adsorption of Cu(II) was attained at pH 3.0, and the maximum adsorption capacities were attained at pH 6.0. Adsorption isotherms were adjusted to a modified Langmuir equation and the maximum number of moles adsorbed of Cu(II) and Cd(II) were 0.089 and 0.071 mmol g-1, respectively. The results are superior to many materials currently employed in metal removal from aqueous samples

    Synthesis, Characterization, and Photocatalytic Activity of Pure and N-, B-, or Ag- Doped TiO2

    No full text
    This article reports the synthesis and characterization of pure and N-, B-, and Ag-doped TiO2 and the ability of these oxides to photodegrade methylene blue (MB) under sunlight or UV-ABC radiation. The compounds were synthesized using the sol-gel method and characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Photocatalytic efficiency was significantly increased by N-doping, resulting in 98% MB decomposition under UV-ABC irradiation for 180 min. Ag- and B-doped TiO2 lowered MB degradation rates to 52 and 73%, respectively, compared with pure TiO2. The same behavior was observed with exposure to UV-Vis, with 88, 65, 60, and 42% MB removal with N-doped, pure, B-doped, and Ag-doped TiO2, respectively. Under visible light alone, N-doped TiO2 exhibited higher photocatalytic efficiency than commercial P25-type TiO2. Photocatalysis with N-doped TiO2 proved to be a promising alternative for MB degradation, given the potential of employing solar energy, thus minimizing operating costs

    Attachment of 2,2-bipyridine onto a silica gel for application as a sequestering agent for copper, cadmium and lead ions from an aqueous medium

    No full text
    A method was developed to attach 2,2-bipyridine (BP) onto a silica gel surface by a two-step reaction. The first step consisted of a reaction between the matrix and a silylating agent, 3-chloropropyltrimeth-oxysilane. In the second step of the reaction, a ligand molecule was attached onto Si-CPTS, yielding the product Si-BP. The modified material contained 0.431 +/- 0.01 mmol of 2,2-bipyridine per gram of modified silica, as confirmed by FT-IR spectra of the proposed structure. The surface modification was characterized by the BET technique, which revealed a decrease in the surface area from 614 to 450 m(2) g(-1). The series of adsorption isotherms for the metal ions were adjusted to fit a modified Langmuir equation. The maximum number of moles of copper, cadmium and lead ions adsorbed was 0.64, 0.53, and 0.54 mmol g-1, respectively. The surface saturation was calculated as phi fraction and the values obtained, Cu(II) = 1.160, Cd(II) = 1.044 and Pb(II) = 0.997, suggest a type 1:1 metal-ligand complex.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore