5 research outputs found

    Chromosomal in situ suppression hybridization of immunologically classified mitotic cells in hematologic malignancies

    Get PDF
    Chromosomal in situ suppression (CISS) hybridization was performed with library DNA from sorted human chromosomes 8, 9, 15, 17, 21, and 22 on immunologically stained bone marrow cells of four patients with a hematologic neoplasm, including two patients with myelodysplastic syndrome and trisomy 8, one patient with promyelocytic leukemia bearing the translocation t(15;17)(q22;q11-12), and one patient with chronic myeloid leukemia and the translocation t(9;22)(q34;q11). In all patients, the results of conventional karyotype analysis could be confirmed by one- or two-color CISS hybridization using the appropriate chromosome-specific libraries. Our results show that CISS hybridization can detect both numerical and structural chromosome changes in immunologically classified cells with high specificity and reliability. The fact that chromosome spreads of very poor quality can now be included in such analyses is a decisive advantage of this approach. In addition, the suitability of this approach for interphase cytogenetics is discussed

    Leukemic cluster growth in culture is an independent risk factor for acute myeloid leukemia and short survival in patients with myelodysplastic syndrome.

    Get PDF
    In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU-C assays have a significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis

    Genomic acute myeloid leukemia-associated inv(16)(p13q22) breakpoints are tightly clustered.

    No full text
    The inv(16) and related t(16;16) are found in 10% of all cases with de novo acute myeloid leukemia. In these rearrangements the core binding factor beta (CBFB) gene on 16q22 is fused to the smooth muscle myosin heavy chain gene (MYH11) on 16p13. To gain insight into the mechanisms causing the inv(16) we have analysed 24 genomic CBFB-MYH11 breakpoints. All breakpoints in CBFB are located in a 15-Kb intron. More than 50% of the sequenced 6.2 Kb of this intron consists of human repetitive elements. Twenty-one of the 24 breakpoints in MYH11 are located in a 370-bp intron. The remaining three breakpoints in MYH11 are located more upstream. The localization of three breakpoints adjacent to a V(D)J recombinase signal sequence in MYH11 suggests a V(D)J recombinase-mediated rearrangement in these cases. V(D)J recombinase-associated characteristics (small nucleotide deletions and insertions of random nucleotides) were detected in six other cases. CBFB and MYH11 duplications were detected in four of six cases tested
    corecore