2,612 research outputs found

    Risk of contagion of SARS-CoV-2 among otorhinolaryngologists in Spain during the 'Two waves'.

    Full text link
    Introduction The aim of our study was to obtain data about the contagion rate among Otolaryngologists in Spanish ENT Departments and about the clinical outcomes in positive otolaryngologists. As a secondary objective, we aim to assess the rate of contagion in the first and the second Covid-19 wave in Spain among Otorhinolaryngologists and the regional distribution by ENT-Departments. Methods Study design and population: This is a prospective observational study in a cohort of 975 Otolaryngologists from 87 ENT Departments conducted from March 25 to November 17 in our collaborative group, COVID ORL ESP. COVID-19 polymerase chain reaction (PCR) was the diagnostic standard. Hospitalization and/or intensive care admission and mortality was recorded as non-identified data. Results Data collected from 975 otolaryngologist from 87 Departments resulted in 157 (16.5%) otolaryngologists testing positive for SARS-CoV-19 by RT-PCR. Important geographic differences in contagion are reported. A total of 136 (86.6%) otolaryngologists were tested positive during the first wave and 21 (13.3%) during the second wave. At the last cut-off point of the study only 30/87 ENT Departments (34.5%) remained COVID19-free and 5 Departments reported more than 50% staff members testing positive. The majority of positive tested otolaryngologists (126/157; 80.2%) had only mild or no symptoms, 17 developed moderate symptoms (10.8%) and 3 had pneumonia not requiring hospitalization (2%). Five colleagues were admitted at hospital, 4 required ICU (2.5%) and 2 colleges died from COVID-19. Conclusions During the first wave of the SARS-CoV-19 pandemic otolaryngologists in Spain have been overall the group suffering the highest rate of contagion, particularly during the first month. Subsequently, the Spanish Ministry of Health should include otorhinolaryngologists as a high-risk group in airborne pandemics

    Effects of Maternal Fish Oil and/or 5-MethylTetrahydrofolate Supplementation during Pregnancy on Offspring Brain Resting-State at 10 Years Old: A Follow-Up Study from the NUHEAL Randomized Controlled Trial

    Get PDF
    Recent studies have shown that maternal supplementation with folate and long-chain polyunsaturated fatty acids (LC-PUFAs) during pregnancy may affect children’s brain development. We aimed at examining the potential long-term effect of maternal supplementation with fish oil (FO) and/or 5-methyl-tetrahydrofolate (5-MTHF) on the brain functionality of offspring at the age of 9.5–10 years. The current study was conducted as a follow-up of the Spanish participants belonging to the Nutraceuticals for a Healthier Life (NUHEAL) project; 57 children were divided into groups according to mother’s supplementation and assessed through functional magnetic resonance imaging (fMRI) scanning and neurodevelopment testing. Independent component analysis and double regression methods were implemented to investigate plausible associations. Children born to mothers supplemented with FO (FO and FO + 5-MTHF groups, n = 33) showed weaker functional connectivity in the default mode (DM) (angular gyrus), the sensorimotor (SM) (motor and somatosensory cortices) and the fronto-parietal (FP) (angular gyrus) networks compared to the No-FO group (placebo and 5-MTHF groups, n = 24) (PFWE < 0.05). Furthermore, no differences were found regarding the neuropsychological tests, except for a trend of better results in an object recall (memory) test. Considering the No-FO group, the aforementioned networks were associated negatively with attention and speed-processing functions. Mother’s FO supplementation during pregnancy seems to be able to shape resting-state network functioning in their children at school age and appears to produce long-term effects on children´s cognitive processing.European Union (EU) 212652 007036Commission of the European Community within the 5th Framework Program QLK1-CT-1999-00888European Research Council (ERC) 322605 META-GROWTHSpanish Ministry of Science, Innovation and Universities FJCI-2017-3339

    Effects of golimumab and ustekinumab on circulating dendritic cell migratory capacity in inflammatory bowel disease

    Full text link
    Inflammatory bowel disease (IBD) is a chronic condition which includes ulcerative colitis (UC) and Crohn’s disease (CD), the origins of which are not yet fully understood. Both conditions involve an exacerbated immune response in the intestinal tract, leading to tissue inflammation. Dendritic cells (DCs) are antigen-presenting cells crucial for maintaining tolerance in the gastrointestinal mucosa. Previous research has indicated that DC recruitment to the intestinal mucosa is more pronounced in individuals with IBD, but the specific mechanisms governing this migration remain unclear. This study aimed to assess the expression of various homing markers and the migratory abilities of circulating DC subsets in response to intestinal chemotactic signals. Additionally, this study examined how golimumab and ustekinumab impact these characteristics in individuals with IBD compared to healthy controls. The findings revealed that a particular subset of DCs known as type 2 conventional DCs (cDC2) displayed a more pronounced migratory profile compared to other DC subsets. Furthermore, the study observed that golimumab and ustekinumab had varying effects on the migratory profile of cDC1 in individuals with CD and UC. While CCL2 did not exert a chemoattractant effect on DC subsets in this patient cohort, treatment with golimumab and ustekinumab enhanced their migratory capacity towards CCL2 and CCL25 while reducing their migration towards MadCam1. In conclusion, this study highlights that cDC2 exhibits a heightened migratory profile towards the gastrointestinal mucosa compared to other DC subsets. This finding could be explored further for the development of new diagnostic biomarkers or the identification of potential immunomodulatory targets in the context of IB

    Surface-enhanced photoinduced charge transfer processes in metal-molecule nanoclusters

    Get PDF
    Resumen de conferencia presentada en el congreso ICP2013 en Lovaina (Bélgica) en julio de 2013This work deals with the unexplained efficiency of the electrode potential (EV) in tuning the energy of Charge Transfer (ECT) electronic states of hybrid systems formed by molecules and metal nanostructures. Huge energy gains (G) of up to 5 eV/V observed in electrochemical SERS experiences have been tentatively explained by a local increase of the electric potential at specific adsorption sites.[1] This gain, which is in conflict with the classical picture of the metal-adsorbate CT mechanism (G=1), can be quite relevant since it means that a relatively small change in the applied voltage can produce a large shift in the CT states, and consequently, it can greatly modify the resonant conditions in a SERS experiment. [2] Supported on electronic structure calculations of metal-molecule nanoclusters, we are able to elucidate that this “anomalous” gain is mainly due to two different contributions, firstly, the sensitivity of the CT electronic states of each particular metal-molecule system on the effective charge excess of the metal, and, secondly, to an enhanced electric capacitance of the metallic nanocluster with respect to the macroscopic values. We associate this last contribution with the so-called “edge effect” that causes inhomogeneities in the density charge at local sites of the metallic surface which could correspond to the very popular "hot spots" between the SERS community. [1] L. Cui, D-Y Wu, A. Wang, B. Ren, Z-Q Tian, J. Phys. Chem. C, 2010, 114, 16588-16595. [2] A. Otto, Surface Science, 1984, 138, 319-338Universidad de Málaga. Campus de Excelencia Internacional de Andalucía Tech

    Resistance in melon to Monosporascus cannonballus and M. eutypoides ; fungal pathogens associated with Monosporascus root rot and vine decline

    Full text link
    This is the peer reviewed version of the following article: Castro, G, Perpiñá, G, Esteras, C, Armengol, J, Picó, B, Pérez-de-Castro, A. Resistance in melon to Monosporascus cannonballus and M. eutypoides: Fungal pathogens associated with Monosporascus root rot and vine decline. Ann Appl Biol. 2020; 177: 101¿ 111, which has been published in final form at https://doi.org/10.1111/aab.12590. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The fungal species Monosporascus cannonballus and M. eutypoides have been described as the causal agents of Monosporascus root rot and vine decline disease (MRRVD), which mainly affects melon and watermelon crops. Resistance to M. cannonballus has been reported in some melon cultivars (ssp. melo). Moreover, melon ssp. agrestis accessions have proven to be better resistance sources. This is the case of the Korean accession 'Pat 81', highly resistant under field and artificial inoculation. The objective of the work here presented was the evaluation of the resistance to MRRVD of different accessions representing the variability of Cucumis melo ssp. agrestis, against both, M. cannonballus and M. eutypoides, in a multiyear assay under different infection conditions. In general, M. eutypoides was less aggressive than M. cannonballus in the different environmental conditions. There was a strong influence of temperature on MRRVD, with more severe symptoms with higher temperatures and with variable effect of infection on plant development depending on the fungal species considered. Resistance to MRRVD has been confirmed in 'Pat 81' and in its derived F1 with a susceptible Piel de Sapo melon. Among the new germplasm explored, African accessions (both wild agrestis and exotic cultivated acidulus) showed good performance in artificial inoculation assays and in field conditions. These sources do not present compatibility problems with commercial melons, so they can be introduced in backcrossing programs. The accession assayed of the wild relative Cucumis metuliferus, also resistant to Fusarium wilt and to root-knot nematode, was highly resistant to MRRVD. The interest of this accession mainly relies in its advantages as a rootstock for melon.Generalitat Valenciana, Grant/Award Number: PROMETEO2017/078; Ministerio de Economia y Competitividad, Grant/Award Number: AGL2014-53398-C2-2-R; Spanish Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: AGL2017-85563-C2-1-RCastro, G.; Perpiña Martin, G.; Esteras Gómez, C.; Armengol Fortí, J.; Picó Sirvent, MB.; Pérez De Castro, AM. (2020). Resistance in melon to Monosporascus cannonballus and M. eutypoides ; fungal pathogens associated with Monosporascus root rot and vine decline. Annals of Applied Biology. 177(1):101-111. https://doi.org/10.1111/aab.12590S1011111771Aegerter, B. J., Gordon, T. R., & Davis, R. M. (2000). Occurrence and Pathogenicity of Fungi Associated with Melon Root Rot and Vine Decline in California. Plant Disease, 84(3), 224-230. doi:10.1094/pdis.2000.84.3.224Salem, I. B., Correia, K. C., Boughalleb, N., Michereff, S. J., León, M., Abad-Campos, P., … Armengol, J. (2013). Monosporascus eutypoides, a Cause of Root Rot and Vine Decline in Tunisia, and Evidence that M. cannonballus and M. eutypoides Are Distinct Species. Plant Disease, 97(6), 737-743. doi:10.1094/pdis-05-12-0464-reBiernacki, M., & Bruton, B. D. (2001). Quantitative Response of Cucumis melo Inoculated with Root Rot Pathogens. Plant Disease, 85(1), 65-70. doi:10.1094/pdis.2001.85.1.65Chew-Madinaveitia, Y. I., Gaytán-Mascorro, A., & Herrera-Pérez, T. (2012). First Report of Monosporascus cannonballus on Melon in Mexico. Plant Disease, 96(7), 1068-1068. doi:10.1094/pdis-02-12-0181-pdnCluck, T. W., Biles, C. L., Duggan, M., Jackson, T., Carson, K., Armengol, J., … Bruton, B. D. (2009). Association of dsRNA to Down-Regulation of Perithecial Synthesis in Monosporascus cannonballus. The Open Mycology Journal, 3(1), 9-19. doi:10.2174/1874437000903010009Cohen, R., Horev, C., Burger, Y., Shriber, S., Hershenhorn, J., Katan, J., & Edelstein, M. (2002). Horticultural and Pathological Aspects of Fusarium Wilt Management Using Grafted Melons. HortScience, 37(7), 1069-1073. doi:10.21273/hortsci.37.7.1069Cohen, R., Pivonia, S., Burger, Y., Edelstein, M., Gamliel, A., & Katan, J. (2000). Toward Integrated Management of Monosporascus Wilt of Melons in Israel. Plant Disease, 84(5), 496-505. doi:10.1094/pdis.2000.84.5.496Cohen, R., Pivonia, S., Crosby, K. M., & Martyn, R. D. (2012). Advances in the Biology and Management of Monosporascus Vine Decline and Wilt of Melons and Other Cucurbits. Horticultural Reviews, 77-120. doi:10.1002/9781118100592.ch2Collado, J., Gonzalez, A., Platas, G., Stchigel, A. M., Guarro, J., & Pelaez, F. (2002). Monosporascus ibericus sp. nov., an endophytic ascomycete from plants on saline soils, with observations on the position of the genus based on sequence analysis of the 18S rDNA. Mycological Research, 106(1), 118-127. doi:10.1017/s0953756201005172Crosby, K. (2000). NARROW-SENSE HERITABILITY ESTIMATES FOR ROOT TRAITS AND MONOSPORASCUS CANNONBALLUS TOLERANCE IN MELON (CUCUMIS MELO) BY PARENT-OFFSPRING REGRESSION. Acta Horticulturae, (510), 149-154. doi:10.17660/actahortic.2000.510.25Crosby, K., Wolff, D., & Miller, M. (2000). Comparisons of Root Morphology in Susceptible and Tolerant Melon Cultivars before and after Infection by Monosporascus cannonballus. HortScience, 35(4), 681-683. doi:10.21273/hortsci.35.4.681Dias, R. de C. S., Pico, B., Espinos, A., & Nuez, F. (2004). Resistance to melon vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breeding, 123(1), 66-72. doi:10.1046/j.1439-0523.2003.00944.xDíaz, J. A., Mallor, C., Soria, C., Camero, R., Garzo, E., Fereres, A., … Moriones, E. (2003). Potential Sources of Resistance for Melon to Nonpersistently Aphid-borne Viruses. Plant Disease, 87(8), 960-964. doi:10.1094/pdis.2003.87.8.960Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., & Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo ) in Africa and Asia and a new close relative from India. American Journal of Botany, 105(10), 1662-1671. doi:10.1002/ajb2.1172Expósito, A., Munera, M., Giné, A., López-Gómez, M., Cáceres, A., Picó, B., … Sorribas, F. J. (2018). Cucumis metuliferusis resistant to root-knot nematodeMi1.2gene (a)virulent isolates and a promising melon rootstock. Plant Pathology, 67(5), 1161-1167. doi:10.1111/ppa.12815Fita, A., Esteras, C., Picó, B., & Nuez, F. (2009). Cucumis melo L. New Breeding Lines Tolerant to Melon Vine Decline. HortScience, 44(7), 2022-2024. doi:10.21273/hortsci.44.7.2022Fita, A., Picó, B., Dias, R. C. S., & Nuez, F. (2008). Effects of root architecture on response to melon vine decline. The Journal of Horticultural Science and Biotechnology, 83(5), 616-623. doi:10.1080/14620316.2008.11512432Fita, A., Picó, B., Dias, R. C. S., & Nuez, F. (2009). ‘Piel de Sapo’ Breeding Lines Tolerant to Melon Vine Decline. HortScience, 44(5), 1458-1460. doi:10.21273/hortsci.44.5.1458Fita, A., Picó, B., Monforte, A. J., & Nuez, F. (2008). Genetics of Root System Architecture Using Near-isogenic Lines of Melon. Journal of the American Society for Horticultural Science, 133(3), 448-458. doi:10.21273/jashs.133.3.448Fita, A., Picó, B., Roig, C., & Nuez, F. (2007). Performance ofCucumis melossp.agrestisas a rootstock for melon. The Journal of Horticultural Science and Biotechnology, 82(2), 184-190. doi:10.1080/14620316.2007.11512218Gisbert C. Sorribas F. J. Martínez E. M. Gammoudi N. Bernat G. &Picó M.B. (2014). Grafting melons onto potentialCucumisspp. rootstocks. InCOST ACTION FA1204 2nd annual conference – Innovation in vegetable grafting for sustainability–Proceedings. 57 pp. Carcavelos Portugal.Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0Iglesias, A., Pico, B., & Nuez, F. (2000). A temporal genetic analysis of disease resistance genes: resistance to melon vine decline derived from Cucumis melo var. agrestis. Plant Breeding, 119(4), 329-334. doi:10.1046/j.1439-0523.2000.00507.xIGLESIAS, A., PICÓ, B., & NUEZ, F. (2000). Pathogenicity of fungi associated with melon vine decline and selection strategies for breeding resistant cultivars. Annals of Applied Biology, 137(2), 141-151. doi:10.1111/j.1744-7348.2000.tb00046.xLeida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2López-Sesé, A. I., & Gómez-Guillamón, M. L. (2000). Resistance to Cucurbit Yellowing Stunting Disorder Virus (CYSDV) in Cucumis melo L. HortScience, 35(1), 110-113. doi:10.21273/hortsci.35.1.110Malloch, D., & Cain, R. F. (1971). New cleistothecial Sordariaceae and a new family, Coniochaetaceae. Canadian Journal of Botany, 49(6), 869-880. doi:10.1139/b71-127Markakis, E. A., Trantas, E. A., Lagogianni, C. S., Mpalantinaki, E., Pagoulatou, M., Ververidis, F., & Goumas, D. E. (2018). First Report of Root Rot and Vine Decline of Melon Caused by Monosporascus cannonballus in Greece. Plant Disease, 102(5), 1036-1036. doi:10.1094/pdis-10-17-1568-pdnD. Martyn, R. (2007). LATE-SEASON VINE DECLINES OF MELONS: PATHOLOGICAL, CULTURAL OR BOTH? Acta Horticulturae, (731), 345-356. doi:10.17660/actahortic.2007.731.46Martyn, R. D. (1996). First Report of Monosporascus Root Rot/Vine Decline of Watermelon in Mexico. Plant Disease, 80, 1430. doi:10.1094/pd-80-1430cMartyn, R. D. (1996). Monosporascus Root Rot and Vine Decline: An Emerging Disease of Melons Worldwide. Plant Disease, 80(7), 716. doi:10.1094/pd-80-0716Negreiros, A. M. P., Júnior, R. S., Rodrigues, A. P. M. S., León, M., & Armengol, J. (2019). Prevalent weeds collected from cucurbit fields in Northeastern Brazil reveal new species diversity in the genusMonosporascus. Annals of Applied Biology, 174(3), 349-363. doi:10.1111/aab.12493Picó, B., Roig, C., Fita, A., & Nuez, F. (2007). Quantitative detection of Monosporascus cannonballus in infected melon roots using real-time PCR. European Journal of Plant Pathology, 120(2), 147-156. doi:10.1007/s10658-007-9203-zPivonia, S., Cohen, R., Kigel, J., & Katan, J. (2002). Effect of soil temperature on disease development in melon plants infected by Monosporascus cannonballus. Plant Pathology, 51(4), 472-479. doi:10.1046/j.1365-3059.2002.00731.xPollack, F. G., & Uecker, F. A. (1974). Monosporascus cannonballus an Unusual Ascomycete in Cantaloupe Roots. Mycologia, 66(2), 346. doi:10.2307/3758370Reuveni, R. (1983). The Role ofMonosporascus eutypoidesin a Collapse of Melon Plants in an Arid Area of Israel. Phytopathology, 73(9), 1223. doi:10.1094/phyto-73-1223Roig, C., Fita, A., Ríos, G., Hammond, J. P., Nuez, F., & Picó, B. (2012). Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics, 13(1), 601. doi:10.1186/1471-2164-13-601Sales Júnior, R., Senhor, R. F., Michereff, S. J., & Negreiros, A. M. P. (2019). REACTION OF MELON GENOTYPES TO THE ROOT´S ROT CAUSED BY Monosporascus. Revista Caatinga, 32(1), 288-294. doi:10.1590/1983-21252019v32n130rcStanghellini, M. E., Alcantara, T. P., & Ferrin, D. M. (2010). Germination ofMonosporascus cannonballusascospores in the rhizosphere: a host-specific response. Canadian Journal of Plant Pathology, 32(3), 402-405. doi:10.1080/07060661.2010.499270Wolff D. W.(1996). Genotype fruit load and temperature affect monosporascus root rot/vine decline symptom expression in melon (Cucumis meloL.). InM. L.Gomez‐Guillamon C.Soria J.Cuartero J. A.Tores &R.Fernandez Munoz(Eds.) Cucurbits toward 2000. Proceedings of the 6th Eucarpia Meeting on Curcurbit Genetics and Breeding(pp. 280–284). Malaga Spain.Wolff, D. W., Leskovar, D. I., Black, M. C., & Miller, M. E. (1997). Differential Fruit Load in Melon (Cucumis melo L.) Affects Shoot and Root Growth, and Vine Decline Symptoms. HortScience, 32(3), 526B-526. doi:10.21273/hortsci.32.3.526bYan, L. Y., Zang, Q. Y., Huang, Y. P., & Wang, Y. H. (2016). First Report of Root Rot and Vine Decline of Melon Caused by Monosporascus cannonballus in Eastern Mainland China. Plant Disease, 100(3), 651-651. doi:10.1094/pdis-06-15-0655-pdnYuste-Lisbona, F. J., López-Sesé, A. I., & Gómez-Guillamón, M. L. (2010). Inheritance of resistance to races 1, 2 and 5 of powdery mildew in the melon TGR-1551. Plant Breeding, 129(1), 72-75. doi:10.1111/j.1439-0523.2009.01655.

    Síndrome Nefrótico secundario a Leptospirosis

    Get PDF
    Un caso clínico de Leptospirosis canina con sintomatología neurológica aguda de tipo convulsiv

    Sex-Specific Relationships of Physical Activity and Sedentary Behaviour with Oxidative Stress and Inflammatory Markers in Young Adults

    Get PDF
    This study aims to analyse sex-specific associations of physical activity and sedentary behaviour with oxidative stress and inflammatory markers in a young-adult population. Sixty participants (21 women, 22.63 ± 4.62 years old) wore a hip accelerometer for 7 consecutive days to estimate their physical activity and sedentarism. Oxidative stress (catalase, superoxide dismutase, glutathione peroxidase, glutathione, malondialdehyde, and advanced oxidation protein products) and inflammatory (tumour necrosis factor-alpha and interleukin-6) markers were measured. Student t-tests and single linear regressions were applied. The women presented higher catalase activity and glutathione concentrations, and lower levels of advanced protein-oxidation products, tumour necrosis factor-alpha, and interleukin-6 than the men (p < 0.05). In the men, longer sedentary time was associated with lower catalase activity (β = −0.315, p = 0.04), and longer sedentary breaks and higher physical-activity expenditures were associated with malondialdehyde (β = −0.308, p = 0.04). Vigorous physical activity was related to inflammatory markers in the women (tumour necrosis factor-alpha, β = 0.437, p = 0.02) and men (interleukin−6, β = 0.528, p < 0.01). In conclusion, the women presented a better redox and inflammatory status than the men; however, oxidative-stress markers were associated with physical activity and sedentary behaviours only in the men. In light of this, women could have better protection against the deleterious effect of sedentarism but a worse adaptation to daily physical activity.This work was partly supported by Universidad de Cádiz (grant number PR2016-051 and PR2019-054), by Instituto de Investigación e Innovación Biomédica de Cádiz (LI19/21IN-CO09), and by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación) (MCIN/AEI/ 10.13039/501100011033), grants PID2019-110063RA-I00 and PID2020-120034RA-I00. J.C.-P. is supported by a predoctoral grant from the Spanish Ministry of Education (Ministerio de Educación) (grant number FPU19/02326). D.V.-D is funded by the Margarita Salas Postdoctoral Program from European Union Next GenerationEU and University of Cádiz. Partial funding for open access charge: Universidad de Málag

    Self-collected saliva for SARS-CoV-2 detection: A prospective study in the emergency room

    Get PDF
    Current diagnostic standards involve severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in nasopharyngeal swabs (NPS), but saliva is an attractive and noninvasive option for diagnosis. The objectives were to determine the performance of saliva in comparison with NPS for detecting SARS-CoV-2 and to compare the optimized home brew reverse-transcription polymerase chain reaction (RT-PCR) with a commercial RT-PCR. Paired NPS and saliva specimens were prospectively collected and tested by RT-PCR from patients presenting at an emergency room with signs and symptoms compatible with coronavirus disease-2019. A total of 348 samples from 174 patients were tested by RT-PCR assays. Among 174 patients with symptoms, 63 (36%) were SARS-CoV-2 positive in NPS using the optimized home-brew PCR. Of these 63 patients, 61 (98%) were also positive in saliva. An additional positive SARS-CoV-2 saliva was detected in a patient with pneumonia. Kappa Cohen´s coefficient agreement between NPS and saliva was 0.96 (95% confidence interval [CI], 0.90?0.99). Median Ct values in NPS versus saliva were 18.88 (interquartile range [IQR], 15.60?23.58; range, 11.97?38.10) versus 26.10 (IQR, 22.75?30.06; range, 13.78?39.22), respectively (p <.0001). The optimized home-brew RT-PCR demonstrated higher analytical and clinical sensitivity compared with the commercial RT-PCR assay. A high sensitivity (98%) and agreement (kappa 0.96) in saliva samples compared to NPS was demonstrated when using an optimized home-brew PCR even when the viral load in saliva was lower than in NPS. This noninvasive sample is easy to collect, requires less consumable and avoids discomfort to patients. Importantly, self-collection of saliva can diminish exposure to healthcare personnel.Fil: Echavarría, Marcela Silvia. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Reyes, Noelia Soledad. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Rodriguez, Pamela Elizabeth. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ypas, Martin. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Ricarte, Joaquina Carmen. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodriguez, María P.. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Pérez, Matías Gastón. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Seoane, Alejandro. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Martinez, Alfredo. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Videla, Cristina Mónica. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Stryjewski, Martin E.. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Carballal, Guadalupe. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Protocolo de detección de malos tratos a personas mayores

    Get PDF
    Elaboración de un protocolo de detección de situaciones de malos tratos a personas mayores en el ámbito de la localidad de Ejea de los Caballeros desde una perspectiva social y sanitari
    corecore