1,461 research outputs found

    Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model

    Full text link
    Using the Constrained Path Monte Carlo (CPMC) method, we simulated the two-dimensional, three-band Hubbard model to study pairing, charge, and spin correlations as a function of electron and hole doping and the Coulomb repulsion VpdV_{pd} between charges on neighboring Cu and O lattice sites. As a function of distance, both the dx2y2d_{x^2 - y^2}-wave and extended s-wave pairing correlations decayed quickly. In the charge-transfer regime, increasing VpdV_{pd} decreased the long-range part of the correlation functions in both channels, while in the mixed-valent regime, it increased the long-range part of the s-wave behavior but decreased that of the d-wave behavior. Still the d-wave behavior dominated. At a given doping, increasing VpdV_{pd} increased the spin-spin correlations in the charge-transfer regime but decreased them in the mixed-valent regime. Also increasing VpdV_{pd} suppressed the charge-charge correlations between neighboring Cu and O sites. Electron and hole doping away from half-filling was accompanied by a rapid suppression of anti-ferromagnetic correlations.Comment: Revtex, 8 pages with 15 figure

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure

    Augmented Reality in Astrophysics

    Full text link
    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.Comment: 15 pages, 11 figures. Accepted for publication in Ap&SS. The final publication will be available at link.springer.co

    Anisotropic London Penetration Depth and Superfluid Density in Single Crystals of Iron-based Pnictide Superconductors

    Full text link
    In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, λ(T)Tn\lambda (T) T^n, with the sample-dependent exponent n=2-2.5, which is indicative of unconventional pairing. This scenario could be possible either through scattering in a s±s_{\pm } state or due to nodes in the superconducting gap. In the Nd-1111 system, the interpretation of data may be obscured by the magnetism of rare-earth ions. The overall anisotropy of the pnictide superconductors is small. The 1111 system is about two times more anisotropic than the 122 system. Our data and analysis suggest that the iron-based pnictides are complex superconductors in which a multiband three-dimensional electronic structure and strong magnetic fluctuations play important roles.Comment: submitted to a special issue of Physica C on superconducting pnictide

    Hydrodynamics of Spatially Ordered Superfluids

    Full text link
    We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional modes due to the superfluid motion of point defects (vacancies and interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication in Phys. Rev.

    Super-KMS functionals for graded-local conformal nets

    Full text link
    Motivated by a few preceding papers and a question of R. Longo, we introduce super-KMS functionals for graded translation-covariant nets over R with superderivations, roughly speaking as a certain supersymmetric modification of classical KMS states on translation-covariant nets over R, fundamental objects in chiral algebraic quantum field theory. Although we are able to make a few statements concerning their general structure, most properties will be studied in the setting of specific graded-local (super-) conformal models. In particular, we provide a constructive existence and partial uniqueness proof of super-KMS functionals for the supersymmetric free field, for certain subnets, and for the super-Virasoro net with central charge c>= 3/2. Moreover, as a separate result, we classify bounded super-KMS functionals for graded-local conformal nets over S^1 with respect to rotations.Comment: 30 pages, revised version (to appear in Ann. H. Poincare

    Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

    Full text link
    Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.Comment: 9 pages, 4 ps figure

    Thermally-induced expansion in the 8 GeV/c π\pi^- + 197^{197}Au reaction

    Full text link
    Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c π\rm{\pi^-} beams incident on a 197\rm{^{197}}Au target have been analyzed in order to deduce the possible existence and influence of thermal expansion. The average fragment kinetic energies are observed to increase systematically with fragment charge but are nearly independent of excitation energy. Comparison of the data with statistical multifragmentation models indicates the onset of extra collective thermal expansion near an excitation energy of E*/A \rm{\approx} 5 MeV. However, this effect is weak relative to the radial expansion observed in heavy-ion-induced reactions, consistent with the interpretation that the latter expansion may be driven primarily by dynamical effects such as compression/decompression.Comment: 12 pages including 4 postscript figure
    corecore