957 research outputs found
Chargino Production and Decay in Photon-Photon-Collisions
We study the production and leptonic decay of charginos in collisions of
polarized photon beams including the complete spin correlations. The photons
can be generated by Compton backscattering of polarized laser pulses off a
polarized electron beam. Since the production process is determined alone by
the electromagnetic coupling of the charginos this process allows to study
their decay dynamics. The cross section and the forward-backward asymmetry of
the decay lepton are very sensitive to the gaugino mass parameter and to
the sneutrino mass without any ambiguities.Comment: 9 pages, 6 figures, LaTeX, Talk presented at the International
Workshop on High Energy Photon Collider
The GW space-time method for the self-energy of large systems
We present a detailed account of the GW space-time method. The method increases the size of systems whose electronic structure can be studied with a computational implementation of Hedin's GW approximation. At the heart of the method is a representation of the Green function G and the screened Coulomb interaction W in the real-space and imaginary-time domain, which allows a more efficient computation of the self-energy approximation Sigma = iGW. For intermediate steps we freely change between representations in real and reciprocal space on the one hand, and imaginary time and imaginary energy on the other, using fast Fourier transforms. The power of the method is demonstrated using the example of Si with artificially increased unit cell sizes. (C) 1999 Elsevier Science B.V
Probing CP Violation with and without Momentum Reconstruction at the LHC
We study the potential to observe CP-violating effects in SUSY cascade decay
chains at the LHC. We consider squark and gluino production followed by
subsequent decays into neutralinos with a three-body leptonic decay in the
final step. Asymmetries composed by triple products of momenta of the final
state particles are sensitive to CP-violating effects. Due to large boosts
these asymmetries can be difficult to observe at a hadron collider. We show
that using all available kinematic information one can reconstruct the decay
chains on an event-by-event basis even in the case of 3-body decays, neutrinos
and LSPs in the final state. We also discuss the most important experimental
effects like major backgrounds and momentum smearing due to finite detector
resolution. We show that with 300 fb of collected data, CP violation may
be discovered at the LHC for a wide range of the phase of the bino mass
parameter .Comment: Version accepted for publication in JHEP. Clarifications added on the
assumptions used for plots. New references adde
The long-wavelength behaviour of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems
The polarization-dependence of the exchange-correlation (XC) energy functional of periodic insulators within Kohn-Sham (KS) density-functional theory requires a divergence in the XC kernel for small vectors q. This behaviour, exemplified for a one-dimensional model semiconductor, is also observed when an insulator happens to be described as a KS metal, or vice-versa. Although it can occur in the exchange-only kernel, it is not found in the usual local, semi-local or even non-local approximations to KS theory. We also show that the test-charge and electronic definitions of the macroscopic dielectric constant differ from one another in exact KS theory, but are equivalent in the above-mentioned approximations
CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model
We investigate the associated production of neutralinos
accompanied by the neutralino
leptonic decay , taking into
account initial beam polarization and production-decay spin correlations in the
minimal supersymmetric standard model with general CP phases but without
generational mixing in the slepton sector. The stringent constraints from the
electron EDM on the CP phases are also included in the discussion. Initial beam
polarizations lead to three CP--even distributions and one CP--odd
distribution, which can be studied independently of the details of the
neutralino decays. We find that the production cross section and the branching
fractions of the leptonic neutralino decays are very sensitive to the CP
phases. In addition, the production--decay spin correlations lead to several
CP--even observables such as lepton invariant mass distribution, and lepton
angular distribution, and one interesting T--odd (CP--odd) triple product of
the initial electron momentum and two final lepton momenta, the size of which
might be large enough to be measured at the high--luminosity future
electron--positron collider or can play a complementary role in constraining
the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure
Decays of the MSSM Higgs Bosons with Explicit CP Violation
We study Higgs boson decays in the minimal supersymmetric standard model
where the tree-level CP invariance of the Higgs potential is explicitly broken
by loop effects of soft CP-violating Yukawa interactions related to scalar
quarks of the third generation. The scalar-pseudoscalar mixing among two
neutral CP-even Higgs bosons and one CP-odd Higgs boson due to explicit CP
violation modifies their tree-level couplings to fermions, to the W^\pm and Z
bosons and to Higgs bosons themselves significantly. We analyze the
phenomenological impact of explicit CP violation on the branching ratios of the
neutral Higgs boson decays in detail and discuss how to directly confirm the
existence of explicit CP violation through \tau^+ \tau^- and t \bar{t} spin
correlations in the decays of the neutral Higgs bosons into a tau-lepton pair
and a top-quark pair.Comment: 28 pages, 10 figures, some references added and correcte
- …
