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The long-wavelength behaviour of the exchange-correlation kernel in the Kohn-Sham
theory of periodic systems
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LUnité de Physico-Chimie et de Physique des Matériauz, Université Catholique de Louvain,
1 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
2 Department of Physics, University of York, Heslington, York YO1 5DD, U. K.
(February 1, 2008)

The polarization-dependence of the exchange-correlation (XC) energy functional of periodic in-
sulators within Kohn-Sham (KS) density-functional theory requires a O(1/¢?) divergence in the XC
kernel for small vectors q. This behaviour, exemplified for a one-dimensional model semiconductor,
is also observed when an insulator happens to be described as a KS metal, or vice-versa. Although it
can occur in the exchange-only kernel, it is not found in the usual local, semi-local or even non-local
approximations to KS theory. We also show that the test-charge and electronic definitions of the
macroscopic dielectric constant differ from one another in exact KS theory, but are equivalent in

the above-mentioned approximations.
PACS numbers: 71.10.+x, 77.22.Ej

I. INTRODUCTION

We have recently reexamined [1-3] the exchange-
correlation potential, Vi.(r), that represents electronic
exchange and correlation in the Kohn-Sham formulation
of density-functional theory (DFT), in the case of macro-
scopic bodies. Our analysis focused on periodic solids
with a uniform macroscopic polarization: a crystal sub-
jected to a homogeneous external electric field, or a polar
crystal. We showed that the exact Vi, inside the crystal
is required to have an ultra-non-local dependence on the
surface electron density, or, equivalently, on the macro-
scopic polarization. In the present paper, we will show
that the exchange-correlation kernel, K., is a power-
ful vehicle for analyzing the presence of this dependence
in the common approximations for exchange and corre-
lation. The required wavevector-dependence of K. is
illustrated in the exact DFT of a model system. Links
with the polarizability in insulators and metals will also
be established.

We first define some useful quantities and notation.
Within the Kohn-Sham (KS) formulation of Density
Functional Theory [4], a system of interacting electrons in
its ground state, placed in an external potential, Ve (r),
is mapped onto a fictitious system of independent parti-
cles in an effective potential

Vis(r) = Vexe (r) + Vir(r) + Vie(r), (1)

under the requirement that both generate the same den-
sity n(r). The combined external Ve (r) and Hartree
Vi (r) potentials give the electrostatic potential Vipc(r)
felt by a classical test charge (TC), while the exchange-
correlation (XC) term, Vi.(r), that subsumes all the ad-
ditional many-body effects, acts only on KS electrons.
The XC potential at point r is the first derivative of
the XC energy with respect to the density at this point,

Vie(r) = ff(r) @)

The second derivative of this XC energy with respect to
the densityis called the XC kernel:

, 0% E,.
KXC(I', r ) = W (3)
The explicit forms of Fyc, Vi or Ky as functionals of the
density are unfortunately unknown and calculations are
usually performed within the local-density approxima-
tion (LDA), within semi-local approximations such as the
generalized gradient approximations (GGA) [5], or even
within non-local approximations such as the weighted-
density approximation (WDA) [6].

In the same manner as V. constitutes a sizeable con-
tribution to the KS effective potential, K. plays an im-
portant role in the investigation of the responses of the
KS system to static external pertubations. The density
response of the interacting electron system to an external
perturbation is described by the polarizability matrix x:

on(r) = /x(r,r’) Vexs (r/)dr’. (4)

The so-called “proper part” of the density response, 7 [7],
relates the change of density to the change of the test-
charge potential:

dn(r) = /w(r,r’) Ve (r')dr'. (5)

From the relation between TC and external potentials,
these matrices are related by the following expression
(making use of matrix notations):

71 =X71+Vc, (6)

where V¢ stays for the Coulomb interaction. For periodic
solids, the various quantities are most conveniently rep-
resented in reciprocal space, where x(q+ G,q+ G’), for



example, may be thought of as a matrix in the reciprocal-
space lattice vectors G and G’, for each wavevector q,
with the element G = G’ = 0 known as the head, the
other elements in that row and column as the wings, and
the rest of the matrix as the body [8].

For the KS system, an independent-particle polar-
izability matrix x, is usually introduced, relating the
change of density to that of the effective KS potential:

on(r) = /Xo(r,r’) SVks(r')dr'. (7)

Using Egs. (1) and (6), this independent-particle po-
larizability matrix is easily linked with the interacting-
particle polarizability and its proper part:

o= Ve + Ke
=71 '+ K. (8)

Following the Adler and Wiser sum-over-state tech-
nique [9], x, can be directly computed from the KS wave-
functions. As shown by Eq. (8), the knowledge of K. is
crucial in deducing x or 7 from x,. This key role was
recently recalled by Dal Corso, Baroni and Resta [10].

In connection with the KS band-gap problem it was
shown by Godby and Needs [11], within certain approx-
imations, that the ground state of a periodic insulator
is sometimes described as a metal in KS theory. This
is particularly striking in that the long-wavelength be-
haviour of the polarizability matrix x for an insulator is
qualitatively different from that of a metal, while x is a
ground-state quantity and should be correctly obtained
within DFT. Godby and Needs emphasized that a highly
nonanalytic K. could allow such a phenomenon.

Recently, we proposed that the exact XC energy func-
tional is polarization-dependent in the case of periodic
insulating solids submitted to a homogeneous electric
field [1]. After exploring in some detail the consequences
of this finding, Aulbur, J6nsson and Wilkins [12] showed
the presence of a sizeable contribution of the polarization-
dependence of Fy. to the linear and non-linear optical
response of real materials. For polar solids, careful treat-
ment of the polarization is mandatory, even if no homo-
geneous electric field is present [2]. Resta [13] tried to
address the origin of these effects: he proposed that the
polarization dependence should arise from the Coulomb
coupling between the electron, in the bulk, and part of its
correlation hole delocalized at the surface. At variance,
Martin and Ortiz [14], pointed out that the shape of the
XC hole may already depend on the surface charge, and
we demonstrated [3] that a polarization-dependence is ex-
pected at the purely exchange level (without correlation).
In another paper, Martin and Ortiz [15] placed the new
density-polarization functional theory in the perspective
of important works of the seventies, and presented an
alternative formulation of it.

In Section II of the present paper, we link the
polarization-dependence of the XC energy to a O(1/¢?)
divergence of K. in the limit of ¢ — 0, briefly sketched
in Ref. [16], and illustrate this behaviour in the case of
a one-dimensional semiconductor. An analysis of related
points was given in Ref. [12]. This requirement of the ex-
act KS theory is not fulfilled in the usual approximations
such as the LDA, the GGA, and the WDA, as shown
in Section III. In Section IV, we observe that a O(1/4?)
behaviour of the exact XC kernel is able to resolve the
“true insulator - KS metal” paradox. A unified treat-
ment of K. for insulators and metals is given in Section
V, together with an analysis of the exchange-only kernel.
We will finally discuss (Section VI) the consequences of
these facts for the different definitions of the macroscopic
dielectric constant.

II. DIVERGENCE OF Kxc

Working on periodic insulators first, we adopt the same
perturbative approach (long-wave method) as in Ref. [1],
and briefly recall one of its central result. The change
of external potential §Viy; produced by an infinitesimal
homogeneous electric field §Eex is (written in one dimen-
sion for brevity):

Vext(r) = %ii% Vet (q) (€' —e7'7)

gcxt

= lim
q—0

sin(qr) (9)

In reponse to this perturbation, the system will develop
a change of density on(r). Owing to local field effects
(Umklapp processes), it may contain contributions at dif-
ferent (¢ + G) vectors (where G belongs to the reciprocal
lattice). Within linear response, the long-wave part of én
takes the form:

n(r) = — ;i_r)% q 6P sin(qr) (10)

where §P is the change of polarization for ¢ = 0 [17].

Generally, the self-consistent screening potential will
also contain long-wave and more rapidly varying terms.
Its long-wave part will include an Hartree contribution,
corresponding to the screening of the applied field due to
the Coulomb interaction. In Ref. [1], we demonstrated
that the polarization dependence of Fy. will manifest it-
self through a homogeneous XC electric field 0€x., so that
for ¢ — 0:

(11)

From Egs. (2) and (3), the XC kernel and potential are
related by 0Vi. = Ky 0n. Isolating in this equation the
long-wave terms from the other contributions, we obtain,



in a generalized matrix notation (in which G stands for
all non-zero vectors of the reciprocal lattice):

1 0&xe —q ISP
q 2i — Kxc 21 . 12
( Vieg+G ) < ong+a > (12)

In order for the change in exchange-correlation field §&x,
to be finite when a finite change of polarization dP takes
place, the head of the exact exchange-correlation kernel
matrix, Ky.(q,q), must exhibit a O(1/¢?) divergence in
the limit of ¢ — 0 [16,12].

The previous results can be illustrated in the case of
a simple model one-dimensional semiconductor, already
used in Ref. [1], and for which K. can be computed ex-
actly (within the model). In this model, the sum of the
external and Hartree potential is taken to be:

Vext () + Vi (x) =V, cos(2mx/a), (13)

where a is the unit cell length. Moreover, a simple non-
local self-energy operator is present, with the aim of mim-
icking the relevant many-body effects. It has the same
non-local form and same parameters as in Refs. [18,1]:

f(z) + f(=')

S(r, ! =
(r,r",w) 5

g(jz — ') (14)
where f(x) = F, [1 — cos(2mx/a)] is a negative function
that has the cell periodicity and g¢(y) is a normalized
gaussian of width w. We construct an ezact KS theory
for this model system by determining the local potential
Vks, which, when filled with non-interacting electrons,
reproduces the density obtained when including the self-
energy operator [18,1].

The proper part m of the polarizability of the model
system can be obtained using the Adler and Wiser [9]
sum-over-state technique applied to the eigenfunctions
and eigenvalues of the reference Hamiltonian (that in-
cludes X, which is taken to be independent of changes in
the external potential).

From our KS wavefunctions, that reproduce the
same density, it is also possible to compute the KS
independent-particle polarizability, x,, from the Adler
and Wiser technique. The relationship between 7 and
Xo is given by Eq. (8), so that we obtain :

Ke=x,'—m L (15)

In Fig. 1 we have plotted the diagonal part of the com-
puted Ky.. The calculation was performed on a 80-unit-
cell, which guarantees a convergence better than 0.7%.
We observe a divergence in the limit of ¢ — 0. The inset
exhibits its expected O(1/¢?) character.

We note that the divergence of K. has been obtained
without including long-range correlation effects in our
model semiconductor [19]. Inclusion of such effects would
simply modify the coefficient of the Ky.(g, q) divergence.

IIT. APPROXIMATE FUNCTIONALS

In the previous Section, we have linked the
polarization-dependence of the XC energy with an
O(1/¢?) divergence of the XC kernel, and given an ex-
ample of this behaviour. The link with a third concept,
the ultra-non-local sensitivity of the exchange-correlation
functional [18] was emphasized in Refs. [1,2]: a change in
surface charge may have an influence on the bulk XC po-
tential, independently of the distance between the point
in the bulk and the surface. Any approximate XC func-
tional can now be analyzed in the light of these charac-
teristics of the exact functional. Although they have the
same physical origin, each of them provides a different
point of view.

As regards the ultra-non-locality requirement, the be-
haviour of LDA and GGA is clear: the corresponding
exchange-correlation potentials at any point do not de-
pend on the density outside the immediate neighborhood.
The following analysis of the small wavevector depen-
dence of the exchange-correlation kernel provides a more
refined picture of the violation of this requirement.

To start with, we consider the XC kernel in the LDA,

6VLDA

K)%PA(rvrI) = Sn

o —1'). (16)

r

The Fourier transform of this kernel, diagonal in real
space, is such that KP4 (q,q) is independent of q [20].
The gradient-corrected XC energy has the form

ESGA[y] — / exeln(r), Vn(r)]dr, (17)

with the corresponding potential :

Oexc
ovVn

_ Oexc

GGA
VSO () = X

(18)

r

The relationship between the long wavelength GGA-XC
potential and the long wavelength density is therefore
governed by the following kernel (compare with Eqgs.(15)
and (22) of Ref. [10]):

1 d%e
K GGA _ / xe | g
v (q,q) 9 [ o o2 | r

_2ij§:Qa /Q (5;5%;2§;557‘rdr
%exe
—%qafm/ﬂ (3(3a3)(3(3ﬁn))’rdr} (19)

The first term of the right member of this equation is
the Fourier transform of the term appearing in the LDA.
Eq. (19) makes clear that the gradient corrections pro-
duces terms with positive powers of ¢, but not the re-
quired O(1/¢?) divergence.




Contrary to what is expected by Mazin and Cohen [21],
the GGA has therefore no apparent ability to improve
upon the LDA behaviour in this respect. Mazin and Co-
hen were also expecting the weighted-density approxi-
mation (WDA), in which the XC functional is truly non-
local, to improve upon the LDA behaviour. We now an-
alyze this case.

The exchange-correlation energy is given exactly by the
adiabatic connection formula, in terms of the coupling-
constant averaged pair-correlation hole, G(r,r’; [n]):

STACE =

This exact expression was the starting point of the analy-
sis of the XC hole by Resta [13]. In the WDA [6], the ex-
act pair-correlation function at each point r is replaced by
the pair-correlation evaluated for a homogeneous electron
gas with “weighted” density, G"*™(r,r’;7(r; [n])), where
A(r; [n]) is determined from the density in the whole
space so as to satisfy the requirement that the exchange-
correlation hole integrates to —1. The corresponding
WDA-XC potential is made of three terms

VX\QIDA(TO) — l / Ghom(r(h rl; ﬁ(r; [n])) n(r')dr'

(r')drdr’ (20)

2 |rg — 1/
1 hom o (e

4= /n(r)G (r,ro,n(r, [n]))dr
2 |r — o]

L [ n(x)n(x)) 6G"" (r,x'sn(r; [n])) .,
5 // - 51 (ro) drdr’. (21)

If the WDA-XC energy functional were ultra-non-local,
arbitrarily remote surface charges would influence the
XC potential, so as to induce the possibility of a linear
XC potential in the bulk. The first or second terms of
Eq. (21) would present such a behaviour if the homoge-
neous gas pair-correlation function GP™ were replaced
by some constant (independent of the distance between
r and r’): in this case they would be similar to a Hartree
potential, that exhibits the desired dependence upon sur-
face charge. A partly delocalized exchange-correlation
hole would lead to the same kind of behaviour [13]. But
the pair-correlation for a homogeneous gas, G*™, decays
on average as the inverse of the fifth power of the distance
between the points [6]. This decay will make these terms
insensitive to the surface charge.

In the third term of Eq. (21), the derivative of the pair-
correlation function with respect to some change of den-
sity appears. Ortiz and Martin have interpreted the cor-
responding term in the exact expression as coming from
the polarizability of the exchange-correlation hole [14],
sensitive to the TC or KS homogeneous electric field.
But we will see that the WDA exchange-correlation hole
is not as sensitive as the exact exchange-correlation hole.
The derivative of the pair-correlation function can be ob-
tained thanks to the chain rule,

5Ghom(

o) _ S e e )

on(r 57 (r) on(ro)

The above-mentioned decay of GP™ affects both fac-
tors of the right-hand side. The first factor will exhibit
the same decay as the homogeneous gas pair-correlation
function, while the dependence of 7i(r; [n]) upon dn(ryp),
driven by the requirement that the exchange-correlation
hole integrates to —1, will also be spatially short-ranged:
a finite change of surface charge density on the surface of
the crystal, times the r—° decay and integrated over the
whole surface, yields zero contribution in the thermody-
namical limit. As a consequence, all the terms in Eq. (21)
are insensitive to arbitrarily remote surface charges, so
that no polarization-dependence is present in VX‘(’:VDA.

Thus, in opposition to the suggestion of Mazin and
Cohen [21,22], we find that the possible non-locality
of approximate functionals is not sufficient to gener-
ate a polarization-dependence: one needs an ultra-non-
local dependence. This might be attained by consider-
ing either a model pair-correlation function that does
not integrate to —1 in the bulk [13], or a polarizable
exchange-correlation hole [14], as in the exact exchange
approach [3].

IV. THE METAL — INSULATOR PARADOX

Godby and Needs [11] observed that the KS band
structure of semiconductors might present the charac-
teristics of a metallic state (the absence of a band gap).
We now argue that it is precisely the same O(1/¢?) be-
haviour of Ky.(g,q) that allows this “true insulator-KS
metal” paradox to be understood.

In order to make the analysis as simple as possible,
we first ignore local field corrections, and also impose
cubic symmetry. In this case, only the head of the dif-
ferent matrices appearing in Eq. (8) must be taken into
account, which means that this equation reduces to a
scalar equality. The small wavevector behaviours of
and Yy, are well-known in both the metallic and the in-
sulating case [7]. The independent-particle polarizability
of a KS metallic ground-state behaves like

lim Xo(q,¢) = 7, (23)
q—0
while for a cubic KS insulator, one has
lim Xo(4,4) = aq”, (24)

where v and « are some negative constants. The head
of the polarizability matrix (¢, q) for a metal (interact-

ing electrons, not KS electrons) behaves exactly as —g
in the long-wavelength limit (which corresponds to com-

plete screening of the Coulomb potential), while for cu-

2
bic insulators, it is —Z—W B, where 3 is a positive constant
smaller than one, describing the incomplete screening.



Now, one imposes no divergence in x,'(q,q) (metal-
lic KS ground state), and non-cancelling divergences of
X 1(q,q) and V¢ (incomplete screening of the insulating
system), so that Eq. (8) without local fields becomes

1 4 4

5 = _6_q2+?+KxC(qJQ)7 (25)
which proves that Ky.(q,q) must have a O(1/¢?) diver-
gence. This result establish a connection between the
“true insulator—KS metal” paradox and the polarization
dependence of the XC energy for insulators: in both
cases, the small-wavevector behaviour of the XC kernel
is similar.

V. UNIFIED TREATMENT OF Kxc FOR
INSULATORS AND METALS

We now consider the treatment of insulators and met-
als in a unique framework. By the way, we will also
generalize the demonstration contained in the preceed-
ing section to the case where local fields are included (we
treat not only the head of K., x,' and 7!, but also
their wings and body).

Following the analysis by Pick, Martin and Cohen [7]
of X, and 7, we find that x, !, for the KS non-interacting
system, and 71, for the interacting system, have the fol-
lowing, similar, non-analytic behaviour. In the insulat-
ing case, the head of these inverse matrices diverges like
O(1/¢?), the wing elements diverge like O(1/q), while the
body elements, though non-analytic, are non-divergent.
In the metallic case, no element shows a divergence for
small wavevectors. The divergences in Ky, = x,; ! — 71,
following Eq.(15), are easy to deduce from these results,
if we suppose that there is no fortuitous cancellation of
divergences when the difference is taken.

For the (usual) “true metal-KS metal” case, since
there is no divergence in ;' or 77!, no element of Ky,
need diverge for small wavevectors in order to correct
the long-wavelength response (although separate non-
analytic behaviour at non-zero wavevectors may be re-
quired to accommodate a disparity between the true and
KS Fermi surfaces). In all the other conceivable cases
(the usual “true insulator—KS insulator” case, the ex-
otic “true insulator—KS metal” case, and the hypotheti-
cal “true metal-KS insulator” case), the head of K. will
diverge like O(1/¢?), the wing elements will diverge like
O(1/q), and the body elements will not diverge.

Although the exchange-only kernel is able to generate
the right divergences in the “true insulator—KS insulator”
case [3], it is unable to do so in the “true insulator-KS
metal” case. Indeed, the argument developed in Ref. [3]
relies on the following result :

0FEy

Vks(a+ G) (26)

V(@) =Y x5 (a.a+G)
G

If the Kohn-Sham system is insulating, ;! will ex-
hibit the appropriate divergences. Following Ref. [3],
the exchange-hole polarizes in a homogeneous KS elec-
tric field, so that one obtains a polarization-dependence
of the exchange-only kernel. On the other hand, if the
Kohn-Sham system is metallic to start with, y, ! has no
divergence, and Vi (q) for short wavevectors will vanish.

Thus, the corrections needed to obtain an insulating-
like polarizability while the Kohn-Sham system is metal-
lic are entirely due to the correlation kernel. In the
adiabatic coupling constant construction of the XC en-
ergy [6], the system at different value of the coupling con-
stant A will undergo a metal-insulator phase transition :
at A = 0, the characteristic system is the Kohn-Sham
metallic system, while at A = 1, one deals with the truly
interacting, insulating, system.

VI. THE MACROSCOPIC DIELECTRIC
CONSTANT

Now that the correct behaviour of K. has been dis-
cussed, we would like to investigate its consequences in
the calculation of the macroscopic dielectric constant of
insulators. At the macroscopic level, this quantity can
be obtained as [23]:

oP
o =1+41— 2
3 +7T6€ (27)

where P is the macroscopic polarization and £ is the
macroscopic electric field.

In order to include the local-field effects in the compu-
tation of €4, Adler and Wiser [9] relied on the dielectric
matrix, relating effective and external potentials as fol-
lows

Y ela+G,q+G)iVer(q+ G') = 6Vexi(q + G),
a+G’

(28)

and connected the macroscopic dielectric constant to the
head of the inverse dielectric matrix:

1
oo = llIm ——. 29
2 e g Q) (29)

The demonstration of Eq. (29) was reported at the RPA
level. The next step was to include correctly the correc-
tion induced by the exchange-correlation effects [24].

In the test-charge formulation of e [24], the effective
potential appearing in Eq. (28) is chosen as the one ex-
perienced by a hypothetical classical charge, 6Vrg =
0Vext + 0Viz. Imposing the variations of the external po-
tential 0Vext(q + G) for G # 0 to be zero, one deduces



1 _ oVi(q)
Taa (30)

* 0Vexe(q) + 6Via(q)
4w én(q)
q? Vext(q) + Vi (q)

The relationship that exists in the long-wave approach
between field and potential and between charge and po-
larization allows one to recover Eq. (27).

In the electron formulation, the effective potential ap-
pearing in Eq. (28) is replaced by the one felt by the
Kohn-Sham electrons, 6Vks = Vext + 6V + 6Vie. The
dielectric constant is then :

_ 1, SVii(q) + 6Vie(q) .
€e (qu q)

=1 (31)

Vet (q) 4 0V (q) + 6Vae(q)

In the absence of polarization-dependence of FE\.
(0Vic(q) = 0), Eq. (32) reduces to Eq. (30). Within
the LDA, GGA or WDA, the test-charge and electron
definitions of e are therefore identical.

Going beyond these approximations, we observe that
the electron definition, Eq. (32), does not reduce to
the test-charge one, Eq. (30), by a simple addition of
the exchange-correlation contribution in the denominator
(macroscopic field), but that the numerator must also in-
clude a modified Coulomb interaction. In addition, it can
be checked that the test-charge definition of the macro-
scopic dielectric constant can be formulated as a second
derivative of the (electric) free energy [25] with respect
to a homogeneous electric field, which is not the case for
the electron formulation.

It is also possible to analyze the direct effect of the
divergence of head and wing elements of Ky.(q,q) on di-
electric matrices. Following Singhal and Callaway [24],
we use the equality

671 = XO[(S‘/CXt + 5VH + 6ch] (33)

to find the form of the dielectric matrices in terms of x,,
Vo and Ky :

erc =1—Voxo [1 = KxeXo] ™, (34)

Ee = 1- VCXO - KxCXo- (35)
These expressions are governed by the products Vo,
and KycXo. The head and wing elements of x, behave
like O(¢?) and O(q) in the limit of ¢ — 0 [7,20]. V¢ is
diagonal, with a divergent O(1/¢?) head. In the small
wavevector limit, their product, an asymmetric matrix,
will have finite head and body, while the upper wing will
diverge like O(1/q) and the lower wing will behave like
O(q). If we completely ignore the effect of the exchange-
correlation terms in Eqgs. (34) and (35), the latter form
is also the form of the dielectric matrices.

If we take into account the effect of a non-divergent
Ky, of the LDA type, the product Ky.x, will behave like

Xo- The handling of such contributions in both Egs. (34)
and (35) will only affect the body of the dielectric ma-
trices, in the small wavevector limit. By contrast, if we
take into account the possible divergences of K., the
product Ky.xo, will behave like Vox,. As such, it will
be able to affect the leading behaviour of all elements in
both formulations of the dielectric matrix.

The macroscopic dielectric constant being obtained
from the head of the inverse dielectric matrix Eq. (29),
the presence of K. will always affect its amplitude. How-
ever, if one deals with a LDA-type K., its influence will
be mediated by local fields only , while the true Ky, will
modify it more directly, in particular through a modifi-
cation of the head of the dielectric matrix.

VII. CONCLUSIONS

In conclusion, we have seen that the polarization de-
pendence of Ey. imposes a condition on the form of the
exchange-correlation kernel: its head must diverge like
O(1/¢?) in the limit of ¢ — 0. This condition is not
satisfied within the LDA, GGA and WDA. The absence
of this divergence in the approximate functionals will af-
fect the amplitude of the computed macroscopic dielec-
tric constant by a finite amount. A similar divergence
is also needed, in order to reproduce the correct dielec-
tric response, when insulators are described as metals in
Kohn-Sham theory.
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