351 research outputs found

    5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.</p> <p>Methods</p> <p>The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP), Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C) and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR.</p> <p>Results</p> <p>Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10.</p> <p>Conclusion</p> <p>5-azacytidine is insufficient for the cardiogenic induction of the ASCs.</p

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Evaluating the use of 3'-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the importance of highly reactive oxygen species (hROS) as reactants in a wide range of biological, photochemical, and environmental systems there is an interest in detection and quantification of these species. The extreme reactivity of the hROS, which includes hydroxyl radicals, presents an analytical challenge. 3'-(<it>p</it>-Aminophenyl) fluorescein (APF) is a relatively new probe used for measuring hROS. Here, we further evaluate the use of APF as a method for the detection of hydroxyl radicals in particle suspensions.</p> <p>Results</p> <p>Particle-generated hROS can be quantified with an estimated detection limit of 50 nM. Measurements of hROS in two National Institute of Standards and Technology (NIST 2709 and 2710) soil suspensions and a pyrite suspension show non-linear particle dose-response curves for hROS generation. APF can also be used in solutions containing no dissolved molecular oxygen (O<sub>2</sub>) to determine the role of O<sub>2 </sub>in the formation of hROS. Results confirm that O<sub>2 </sub>is mechanistically important in the formation of hROS by dissolved ferrous iron and in pyrite suspensions.</p> <p>Conclusion</p> <p>Given the non-linear dose-response curves for particle generation of hROS, we recommend using several particle loadings in experiments aimed to compare particles for their hROS generation potential. The method presented here is specific to hROS and simple to perform. The analysis can be conducted in mobile labs as only basic laboratory equipment is required.</p

    Matrix Metalloproteinase 1: Role in Sarcoma Biology

    Get PDF
    In carcinomas stromal cells participate in cancer progression by producing proteases such as MMPs. The expression MMP1 is a prognostic factor in human chondrosarcoma, however the role in tumor progression is unknown. Laser capture microdissection and In Situ hybridization were used to determine cellular origin of MMP1 in human sarcomas. A xenogenic model of tumor progression was then used and mice were divided in two groups: each harboring either the control or a stably MMP1 silenced cell line. Animals were sacrificed; the neovascularization, primary tumor volumes, and metastatic burden were assessed. LCM and RNA-ISH analysis revealed MMP1 expression was predominantly localized to the tumor cells in all samples of sarcoma (p = 0.05). The percentage lung metastatic volume at 5 weeks (p = 0.08) and number of spontaneous deaths secondary to systemic tumor burden were lower in MMP1 silenced cell bearing mice. Interestingly, this group also demonstrated a larger primary tumor size (p<0.04) and increased angiogenesis (p<0.01). These findings were found to be consistent when experiment was repeated using a second independent MMP1 silencing sequence. Prior clinical trials employing MMP1 inhibitors failed because of a poor understanding of the role of MMPs in tumor progression. The current findings indicating tumor cell production of MMP1 by sarcoma cells is novel and highlights the fundamental differences in MMP biology between carcinomas and sarcomas. The results also emphasize the complex roles of MMP in tumor progression of sarcomas. Not only does metastasis seem to be affected by MMP1 silencing, but also local tumor growth and angiogenesis are affected inversely

    Furiously fast and red: sub-second optical flaring in V404 Cyg during the 2015 outburst peak

    Get PDF
    We present observations of rapid (sub-second) optical flux variability in V404 Cyg during its 2015 June outburst. Simultaneous three-band observations with the ULTRACAM fast imager on four nights show steep power spectra dominated by slow variations on ∼100–1000 s time-scales. Near the peak of the outburst on June 26, a dramatic change occurs and additional, persistent sub-second optical flaring appears close in time to giant radio and X-ray flaring. The flares reach peak optical luminosities of ∼ few × 1036 erg s−1. Some are unresolved down to a time resolution of 24 ms. Whereas the fast flares are stronger in the red, the slow variations are bluer when brighter. The redder slopes, emitted power and characteristic time-scales of the fast flares can be explained as optically thin synchrotron emission from a compact jet arising on size scales ∼140–500 Gravitational radii (with a possible additional contribution by a thermal particle distribution). The origin of the slower variations is unclear. The optical continuum spectral slopes are strongly affected by dereddening uncertainties and contamination by strong Hα emission, but the variations of these slopes follow relatively stable loci as a function of flux. Cross-correlating the slow variations between the different bands shows asymmetries on all nights consistent with a small red skew (i.e. red lag). X-ray reprocessing and non-thermal emission could both contribute to these. These data reveal a complex mix of components over five decades in time-scale during the outburst

    Recent advances in understanding the roles of whole genome duplications in evolution

    Get PDF
    Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life

    The pancreas in human type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) is considered a disorder whose pathogenesis is autoimmune in origin, a notion drawn in large part from studies of human pancreata performed as far back as the 1960s. While studies of the genetics, epidemiology, and peripheral immunity in T1D have been subject to widespread analysis over the ensuing decades, efforts to understand the disorder through analysis of human pancreata have been far more limited. We have reviewed the published literature pertaining to the pathology of the human pancreas throughout all stages in the natural history of T1D. This effort uncovered a series of findings that challenge many dogmas ascribed to T1D and revealed data suggesting the marked heterogeneity in terms of its pathology. An improved understanding and appreciation for pancreatic pathology in T1D could lead to improved disease classification, an understanding of why the disorder occurs, and better therapies for disease prevention and management

    Stem Cell Therapy: Pieces of the Puzzle

    Get PDF
    Acute ischemic injury and chronic cardiomyopathies can cause irreversible loss of cardiac tissue leading to heart failure. Cellular therapy offers a new paradigm for treatment of heart disease. Stem cell therapies in animal models show that transplantation of various cell preparations improves ventricular function after injury. The first clinical trials in patients produced some encouraging results, despite limited evidence for the long-term survival of transplanted cells. Ongoing research at the bench and the bedside aims to compare sources of donor cells, test methods of cell delivery, improve myocardial homing, bolster cell survival, and promote cardiomyocyte differentiation. This article reviews progress toward these goals

    Correlating Global Gene Regulation to Angiogenesis in the Developing Chick Extra-Embryonic Vascular System

    Get PDF
    International audienceBACKGROUND: Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. METHOLOGY/PRINCIPAL FINDINGS: We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21-66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. CONCLUSIONS/SIGNIFICANCE: Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis
    corecore