113 research outputs found

    Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia

    Get PDF
    Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate

    Ecology and diversity of culturable fungal species associated with soybean seedling diseases in the Midwestern United States

    Get PDF
    Aims: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence. Methods and Results: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species. Conclusion: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species. Significance and Impact of the Study: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause

    Defining optimal soybean seeding rates and associated risk across North America

    Get PDF
    Soybean [Glycine max (L.) Merr.] seeding rate research across North America is typically conducted in small geo-political regions where environmental effects on the seeding rate × yield relationship are minimized. Data from 211 individual field studies (∼21,000 data points, 2007–2017) were combined from across North America ranging in yield from 1,000– 7,500 kg ha−1. Cluster analysis was used to stratify each individual field study into similar environmental (soil × climate) clusters and into high (HYL), medium (MYL), and low (LYL) yield levels. Agronomically optimal seeding rates (AOSR) were calculated and Monte Carlo risk analysis was implemented. Within the two northern most clusters the AOSR was higher in the LYL followed by the MYL and then HYL. Within the farthest south cluster, a relatively small (±15,000 seeds ha−1) change in seeding rate from the MYL was required to reach the AOSR of the LYL and HYL, respectively. The increase in seeding rate to reach the LYL AOSR was relatively greater (5x) than the decrease to reach the HYL AOSR within the northern most cluster. Regardless, seeding rates below the AOSR presented substantial risk and potential yield loss, while seeding rates above provided slight risk reduction and yield increases. Specific to LYLs and MYLs, establishing and maintaining an adequate plant stand until harvest maximized yield regardless of the seeding rate, while maximizing seed number was important with lower seeding rates. These findings will help growers manage their soybean seed investment by adjusting seeding rates based upon the productivity of the environment.Fil: Gaspar, Adam P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mourtzinis, Spyridon. University of Wisconsin; Estados UnidosFil: Kyle, Don. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Galdi, Eric. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Lindsey, Laura E.. Ohio State University; Estados UnidosFil: Hamman, William P.. Ohio State University; Estados UnidosFil: Matcham, Emma G. University of Wisconsin; Estados UnidosFil: Kandel, Hans J.. North Dakota State University; Estados UnidosFil: Schmitz, Peder. North Dakota State University; Estados UnidosFil: Stanley, Jordan D.. North Dakota State University; Estados UnidosFil: Schmidt, John P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mueller, Daren S.. University of Iowa; Estados UnidosFil: Nafziger, Emerson D.. University of Illinois; Estados UnidosFil: Ross, Jeremy. University of Arkansas for Medical Sciences; Estados UnidosFil: Carter, Paul R.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Varenhorst, Adam J.. University of South Dakota; Estados UnidosFil: Wise, Kiersten A.. University of Kentucky; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Carciochi, Walter Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Kansas State University; Estados UnidosFil: Chilvers, Martin I.. Michigan State University; Estados UnidosFil: Hauswedell, Brady. University of South Dakota; Estados UnidosFil: Tenuta, Albert U.. University of Guelph; CanadáFil: Conley, Shawn P.. University of Wisconsin; Estados Unido

    Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

    Get PDF
    Neonicotinoids are the most widely used insecticides worldwide and are typically deployed as seed treatments (hereafter NST) in many grain and oilseed crops, including soybeans. However, there is a surprising dearth of information regarding NST effectiveness in increasing soybean seed yield, and most published data suggest weak, or inconsistent yield benefit. The US is the key soybean-producing nation worldwide and this work includes soybean yield data from 194 randomized and replicated field studies conducted specifically to evaluate the effect of NSTs on soybean seed yield at sites within 14 states from 2006 through 2017. Here we show that across the principal soybean-growing region of the country, there are negligible and management-specific yield benefits attributed to NSTs. Across the entire region, the maximum observed yield benefits due to fungicide (FST = fungicide seed treatment) + neonicotinoid use (FST + NST) reached 0.13 Mg/ha. Across the entire region, combinations of management practices affected the effectiveness of FST + N ST to increase yield but benefits were minimal ranging between 0.01 to 0.22 Mg/ha. Despite widespread use, this practice appears to have little benefit for most of soybean producers; across the entire region, a partial economic analysis further showed inconsistent evidence of a break-even cost of FST or FST + N ST. These results demonstrate that the current widespread prophylactic use of NST in the key soybean-producing areas of the US should be re-evaluated by producers and regulators alike

    Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

    Get PDF
    Neonicotinoids are the most widely used insecticides worldwide and are typically deployed as seed treatments (hereafter NST) in many grain and oilseed crops, including soybeans. However, there is a surprising dearth of information regarding NST effectiveness in increasing soybean seed yield, and most published data suggest weak, or inconsistent yield benefit. The US is the key soybean-producing nation worldwide and this work includes soybean yield data from 194 randomized and replicated field studies conducted specifically to evaluate the effect of NSTs on soybean seed yield at sites within 14 states from 2006 through 2017. Here we show that across the principal soybean-growing region of the country, there are negligible and management-specific yield benefits attributed to NSTs. Across the entire region, the maximum observed yield benefits due to fungicide (FST = fungicide seed treatment) + neonicotinoid use (FST + NST) reached 0.13 Mg/ha. Across the entire region, combinations of management practices affected the effectiveness of FST + N ST to increase yield but benefits were minimal ranging between 0.01 to 0.22 Mg/ha. Despite widespread use, this practice appears to have little benefit for most of soybean producers; across the entire region, a partial economic analysis further showed inconsistent evidence of a break-even cost of FST or FST + N ST. These results demonstrate that the current widespread prophylactic use of NST in the key soybean-producing areas of the US should be re-evaluated by producers and regulators alike

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl
    corecore