394 research outputs found
Value of river discharge data for global-scale hydrological modeling
his paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are required for assessing water resources, flood risk and habitat alteration of aqueous ecosystems. An improved version of WGHM (WaterGAP Global Hydrology Model) was tuned in a way that simulated and observed long-term average river discharges at each station become equal, using either the 724-station dataset (V1) against which former model versions were tuned or a new dataset (V2) of 1235 stations and often longer time series. WGHM is tuned by adjusting one model parameter (γ) that affects runoff generation from land areas, and, where necessary, by applying one or two correction factors, which correct the total runoff in a sub-basin (areal correction factor) or the discharge at the station (station correction factor). The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5%, while the area where the model can be tuned by only adjusting γ increases by 8% (546 vs. 384 stations). However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles (389 vs. 93 basins), which is a strong drawback as use of a station correction factor makes discharge discontinuous at the gauge and inconsistent with runoff in the basin. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and for basins where the average sub-basin area has decreased by at least 50% in V2 as compared to V1. For these basins, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 and 1.3, respectively, if the additional discharge information were not used for tuning. The value tends to be higher in semi-arid and snow-dominated regions where hydrological models are less reliable than in humid areas. The deviation of the other simulated flow characteristics (e.g. low flow, inter-annual variability and seasonality) from the observed values also decreases significantly, but this is mainly due to the better representation of average discharge but not of variability. (3) The optimal sub-basin size for tuning depends on the modeling purpose. On the one hand, small basins between 9000 and 20 000 km2 show a much stronger improvement in model performance due to tuning than the larger basins, which is related to the lower model performance (with and without tuning), with basins over 60 000 km2 performing best. On the other hand, tuning of small basins decreases model consistency, as almost half of them require a station correction factor
Simulating river flow velocity on global scale
Flow velocity in rivers has a major impact on residence time of water and thus on high and low water as well as on water quality. For global scale hydrological modeling only very limited information is available for simulating flow velocity. Based on the Manning-Strickler equation, a simple algorithm to model temporally and spatially variable flow velocity was developed with the objective of improving flow routing in the global hydrological model of Water- GAP. An extensive data set of flow velocity measurements in US rivers was used to test and to validate the algorithm before integrating it into WaterGAP. In this test, flow velocity was calculated based on measured discharge and compared to measured velocity. Results show that flow velocity can be modeled satisfactorily at selected river cross sections. It turned out that it is quite sensitive to river roughness, and the results can be optimized by tuning this parameter. After the validation of the approach, the tested flow velocity algorithm has been implemented into the WaterGAP model. A final validation of its effects on the model results is currently performed
Advances and visions in large-scale hydrological modelling : proceedings of the 11th Workshop on Large-scale Hydrological Modelling ; preface
In 1998 the German Universities of Kassel and Giessen organised a workshop on water and solute transport in large drainage basins. The workshop focused on analysing and summarising the state of research, existing problems and perspectives in this research area. It was the second of a series of annual workshops since 1997 that became an important discussion forum for the German-speaking research community in the field of hydrological modelling. Now the 11th Workshop on Large-scale Hydrological Modelling referred to the same questions as posed in 1998 in order to evaluate the developments and advances of the last ten years. Based on keynote presentations, the workshop focused on discussion in working groups where also posters were presented. This volume of "Advances in Geosciences" comprises seven papers referring to the poster contributions. At the end of the volume, an overview paper summarises the outcome of the workshop presentations and discussions (Doll et al.). ..
Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity
The dynamics of nanosystems in solution contain a wealth of information with
relevance for diverse fields ranging from materials science to biology and
biomedical applications. When nanosystems are marked with fluorophores or
strong scatterers, it is possible to track their position and reveal internal
motion with high spatial and temporal resolution. However, markers can be
toxic, expensive, or change the object's intrinsic properties. Here, we
simultaneously measure dispersive frequency shifts of three transverse modes of
a high-finesse microcavity to obtain the three-dimensional path of unlabeled
SiO nanospheres with s temporal and down to nm
spatial resolution. This allows us to quantitatively determine properties such
as the polarizability, hydrodynamic radius, and effective refractive index. The
fiber-based cavity is integrated in a direct-laser-written microfluidic device
that enables the precise control of the fluid with ultra-small sample volumes.
Our approach enables quantitative nanomaterial characterization and the
analysis of biomolecular motion at high bandwidth.Comment: 7 pages, 3 figure
Poröse Sinterkeramikformstoffe mit katalytischer Wirkung durch thermische Behandlung von mit Zeolithen hochgefüllten Schaumstoffen auf der Basis von Recyclaten
Poröse Sinterkeramikwerkstoffe mit unterschiedlichen Porenstrukturen werden heute in vielen Bereichen der Wirtschaft eingesetzt, z. B. als Trennmembranen, als Katalysatorträger, als Trägermaterialien in der Biotechnologie. Dabei sind zwei Arten von Sinterkeramiken zu unterscheiden: zum einen wabenförmige Sinterkeramiken und zum anderen schaumförmige Sinterkeramiken. Die wabenförmigen, oft als Strang hergestellten Sinterkeramiken, werden in immer größerem Maße als Trennmedien, z. B. in der Wasser- und Abluftreinigung, verwendet. Sie sollen hier jedoch nicht weiter betrachtet werden. Die schaumförmigen Sinterkeramiken mit unterschiedlich großer Zellgröße bzw. Zellgrößenverteilung werden als Träger oder als Hochtemperaturisolation eingesetzt. Sie werden nach zwei verschiedenen Technologien
hergestellt: zum einen durch die Füllung der keramischen Massen mit organischem Material, das beim Brennprozess verdampft wird, und zum anderen durch Beschichten von Schaumstoffen mit Keramikschlämmen und deren Brennen, wobei während des Brennens das organische Schaummaterial verdampft wird
Biomechanical testing of zirconium dioxide osteosynthesis system for Le Fort I advancement osteotomy fixation
The following work is the first evaluating the applicability of 3D printed zirconium dioxide ceramic miniplates and screws to stabilize maxillary segments following a Le-Fort I advancement surgery. Conventionally used titanium and individual fabricated zirconium dioxide miniplates were biomechanically tested and compared under an occlusal load of 120N and 500N using 3D finite element analysis. The overall model consisted of 295,477 elements. Under an occlusal load of 500N a safety factor before plastic deformation respectively crack of 2.13 for zirconium dioxide and 4.51 for titanium miniplates has been calculated. From a biomechanical point of view 3D printed ZrO2 mini-plates and screws are suggested to constitute an appropriate patient specific and metal-free solution for maxillary stabilization after Le Fort I osteotomy
Electrochemistry and Spin-Crossover Behavior of Fluorinated Terpyridine-Based Co(II) and Fe(II) Complexes
Due to their ability to form stable molecular complexes that have tailor-made properties, terpyridine ligands are of great interest in chemistry and material science. In this regard, we prepared two terpyridine ligands with two different fluorinated phenyl rings on the backbone. The corresponding CoII and FeII complexes were synthesized and characterized by single-crystal X-ray structural analysis, electrochemistry and temperature-dependent SQUID magnetometry. Single crystal X-ray diffraction analyses at 100 K of these complexes revealed Co−N and Fe−N bond lengths that are typical of low spin CoII and FeII centers. The metal centers are coordinated in an octahedral fashion and the fluorinated phenyl rings on the backbone are twisted out of the plane of the terpyridine unit. The complexes were investigated with cyclic voltammetry and UV/Vis-NIR spectroelectrochemistry. All complexes show a reversible oxidation and several reduction processes. Temperature dependent SQUID magnetometry revealed a gradual thermal SCO behavior in two of the complexes, while EPR spectroscopy provided further insights on the electronic structure of the metal complexes, as well as site of reduction
Gene-based outcome prediction in multiple cohorts of pediatric T-cell acute lymphoblastic leukemia: a Children's Oncology Group study
<p>Abstract</p> <p>Background</p> <p>Continuous complete clinical remission in T-cell acute lymphoblastic leukemia (T-ALL) is now approaching 80% due to the implementation of aggressive chemotherapy protocols but patients that relapse continue to have a poor prognosis. Such patients could benefit from augmented therapy if their clinical outcome could be more accurately predicted at the time of diagnosis. Gene expression profiling offers the potential to identify additional prognostic markers but has had limited success in generating robust signatures that predict outcome across multiple patient cohorts. This study aimed to identify robust gene classifiers that could be used for the accurate prediction of relapse in independent cohorts and across different experimental platforms.</p> <p>Results</p> <p>Using HG-U133Plus2 microarrays we modeled a five-gene classifier (5-GC) that accurately predicted clinical outcome in a cohort of 50 T-ALL patients. The 5-GC was further tested against three independent cohorts of T-ALL patients, using either qRT-PCR or microarray gene expression, and could predict patients with significantly adverse clinical outcome in each. The 5-GC featured the interleukin-7 receptor (<it>IL-7R</it>), low-expression of which was independently predictive of relapse in T-ALL patients. In T-ALL cell lines, low <it>IL-7R </it>expression was correlated with diminished growth response to IL-7 and enhanced glucocorticoid resistance. Analysis of biological pathways identified the NF-κB and Wnt pathways, and the cell adhesion receptor family (particularly integrins) as being predictive of relapse. Outcome modeling using genes from these pathways identified patients with significantly worse relapse-free survival in each T-ALL cohort.</p> <p>Conclusions</p> <p>We have used two different approaches to identify, for the first time, robust gene signatures that can successfully discriminate relapse and CCR patients at the time of diagnosis across multiple patient cohorts and platforms. Such genes and pathways represent markers for improved patient risk stratification and potential targets for novel T-ALL therapies.</p
Tricyanidoferrates(−IV) and ruthenates(−IV) with non‐innocent cyanido ligands
Exceptionally electron-rich, nearly trigonal-planar tricyanidometalate anions [Fe(CN)(3)](7-) and [Ru(CN)(3)](7-) were stabilized in LiSr3[Fe(CN)(3)] and AE(3.5)[M(CN)(3)] (AE=Sr, Ba; M=Fe, Ru). They are the first examples of group 8 elements with the oxidation state of -IV. Microcrystalline powders were obtained by a solid-state route, single crystals from alkali metal flux. While LiSr3[Fe(CN)(3)] crystallizes in P6(3)/m, the polar space group P6(3) with three-fold cell volume for AE(3.5)[M(CN)(3)] is confirmed by second harmonic generation. X-ray diffraction, IR and Raman spectroscopy reveal longer C-N distances (124-128 pm) and much lower stretching frequencies (1484-1634 cm(-1)) than in classical cyanidometalates. Weak C-N bonds in combination with strong M-C pi-bonding is a scheme also known for carbonylmetalates. Instead of the formal notation [Fe-IV(CN-)(3)](7-), quantum chemical calculations reveal non-innocent intermediate-valent CN1.67- ligands and a closed-shell d(10) configuration for Fe, that is, Fe2-
- …