873 research outputs found
Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea
Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0–30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area "Boknis Eck" quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular analyses were conducted to identify key functional methanogenic groups during methylotrophic methanogenesis. To also compare the magnitudes of SRZ methanogenesis with methanogenesis below the sulfate reduction zone (> 30 cm b.s.f.), hydrogenotrophic methanogenesis was determined by 14C-bicarbonate radiotracer incubation in samples collected in September 2013.
SRZ methanogenesis changed seasonally in the upper 30 cm b.s.f. with rates increasing from March (0.2 nmol cm−3 d−1) to November (1.3 nmol cm−3 d−1) 2013 and March (0.2 nmol cm−3 d−1) to September (0.4 nmol cm−3 d−1) 2014. Its magnitude and distribution appeared to be controlled by organic matter availability, C / N, temperature, and oxygen in the water column, revealing higher rates in the warm, stratified, hypoxic seasons (September–November) compared to the colder, oxygenated seasons (March–June) of each year. The majority of SRZ methanogenesis was likely driven by the usage of noncompetitive substrates (e.g., methanol and methylated compounds) to avoid competition with sulfate reducers, as was indicated by the 1000–3000-fold increase in potential methanogenesis activity observed after methanol addition. Accordingly, competitive hydrogenotrophic methanogenesis increased in the sediment only below the depth of sulfate penetration (> 30 cm b.s.f.). Members of the family Methanosarcinaceae, which are known for methylotrophic methanogenesis, were detected by PCR using Methanosarcinaceae-specific primers and are likely to be responsible for the observed SRZ methanogenesis.
The present study indicates that SRZ methanogenesis is an important component of the benthic methane budget and carbon cycling in Eckernförde Bay. Although its contributions to methane emissions from the sediment into the water column are probably minor, SRZ methanogenesis could directly feed into methane oxidation above the sulfate–methane transition zone
Immobilisation of Higher Activity Wastes from Nuclear Reactor Production of 99
A variety of intermediate- and low-level liquid and solid wastes are produced from reactor production of 99Mo using UAl alloy or UO2 targets and in principle can be collectively or individually converted into waste forms. At ANSTO, we have legacy acidic uranyl-nitrate-rich intermediate level waste (ILW) from the latter, and an alkaline liquid ILW, a U-rich filter cake, plus a shorter lived liquid stream that rapidly decays to low-level waste (LLW) standards, from the former. The options considered consist of cementitious products, glasses, glass-ceramics, or ceramics produced by vitrification or hot isostatic pressing for intermediate-level wastes. This paper discusses the progress in waste form development and processing to treat ANSTO’s ILW streams arising from 99Mo. The various waste forms and the reason for the process option chosen will be reviewed. We also address the concerns over adapting our chosen process for use in a hot-cell environment
Cockayne syndrome group B protein has novel strand annealing and exchange activities
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, severe neurological abnormalities and prageroid symptoms. The CS complementation group B (CSB) protein is involved in UV-induced transcription coupled repair (TCR), base excision repair and general transcription. CSB also has a DNA-dependent ATPase activity that may play a role in remodeling chromatin in vivo. This study reports the novel finding that CSB catalyzes the annealing of complementary single-stranded DNA (ssDNA) molecules with high efficiency, and has strand exchange activity. The rate of CSB-catalyzed annealing of complementary ssDNA is 25-fold faster than the rate of spontaneous ssDNA annealing under identical in vitro conditions and the reaction occurs with a high specificity in the presence of excess non-homologous ssDNA. The specificity and intrinsic nature of the reaction is also confirmed by the observation that it is stimulated by dephosphorylation of CSB, which occurs after UV-induced DNA damage, and is inhibited in the presence of ATPγS. Potential roles of CSB in cooperation with strand annealing and exchange activities for TCR and homologous recombination are discussed
Recommended from our members
Quantifying the Evolutionary Dynamics of Language
Human language is based on grammatical rules. Cultural evolution allows these rules to change over time. Rules compete with each other: as new rules rise to prominence, old ones die away. To quantify the dynamics of language evolution, we studied the regularization of English verbs over the past 1,200 years. Although an elaborate system of productive conjugations existed in English’s proto-Germanic ancestor, Modern English uses the dental suffix, ‘-ed’, to signify past tense. Here we describe the emergence of this linguistic rule amidst the evolutionary decay of its exceptions, known to us as irregular verbs. We have generated a data set of verbs whose conjugations have been evolving for more than a millennium, tracking inflectional changes to 177 Old-English irregular verbs. Of these irregular verbs, 145 remained irregular in Middle English and 98 are still irregular today. We study how the rate of regularization depends on the frequency of word usage. The half-life of an irregular verb scales as the square root of its usage frequency: a verb that is 100 times less frequent regularizes 10 times as fast. Our study provides a quantitative analysis of the regularization process by which ancestral forms gradually yield to an emerging linguistic rule.Human Evolutionary BiologyMathematic
Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria
Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV.Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel's clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel's criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV.The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in Black women. Tools developed in this project can be used to study microbial ecology in diverse settings at high resolution
ID1 and ID4 Are Biomarkers of Tumor Aggressiveness and Poor Outcome in Immunophenotypes of Breast Cancer
Inhibitor of differentiation (ID) proteins are a family of transcription factors that contribute to maintaining proliferation during embryogenesis as they avoid cell differentiation. Afterward, their expression is mainly silenced, but their reactivation and contribution to tumor development have been suggested. In breast cancer (BC), the overexpression of ID1 has been previously described. However, whether the remaining ID genes have a specific role in this neoplasia is still unclear. We studied the mRNA expression of all ID genes by q RT-PCR in BC cell lines and 307 breast carcinomas, including all BC subtypes. Our results showed that ID genes are highly expressed in all cell lines tested. However, ID4 presented higher expression in BC cell lines compared to a healthy breast epithelium cell line. In accordance, ID1 and ID4 were predominantly overexpressed in Triple-Negative and HER2-enriched samples. Moreover, high levels of both genes were associated with larger tumor size, histological grade 3, necrosis and vascular invasion, and poorer patients’ outcomes. In conclusion, ID1 and ID4 may act as biomarkers of tumor aggressiveness and worse prognosis in breast cancer, and they could be used as potential targets for new treatments discover.This research was funded by the Alicante Institute for Health and Biomedical Research (ISABIAL) (UGP 16-149 and UGP 180184) and Navarro-Tripodi Foundation (BOLA00150). M.G.E. was supported by fellowships issued by the Valencian Government of Spain (GVA) and the European Social Fund (ACIF/2016/004)
Decatransin, a novel natural product inhibiting protein translocation at the Sec61/SecY translocon
A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (HUN-7293/cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p/Sec61α1 to confer resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and posttranslationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 homolog. We suggest "decatransin" as the name for this novel decadepsipeptide translocation inhibitor
Parsing cyclothymic disorder and other specified bipolar spectrum disorders in youth
© 2018 Elsevier B.V. Objective: Most studies of pediatric bipolar disorder (BP) combine youth who have manic symptoms, but do not meet criteria for BP I/II, into one “not otherwise specified” (NOS) group. Consequently, little is known about how youth with cyclothymic disorder (CycD) differ from youth with BP NOS. The objective of this study was to determine whether youth with a research diagnosis of CycD (RDCyc) differ from youth with operationalized BP NOS. Method: Participants from the Course and Outcome of Bipolar Youth study were evaluated to determine whether they met RDCyc criteria. Characteristics of RDCyc youth and BP NOS youth were compared at baseline, and over eight-years follow-up. Results: Of 154 youth (average age 11.96 (3.3), 42% female), 29 met RDCyc criteria. RDCyc youth were younger (p =.04) at baseline. Over follow-up, RDCyc youth were more likely to have a disruptive behavior disorder (p =.01), and were more likely to experience irritability (p =.03), mood reactivity (p =.02), and rejection sensitivity (p =.03). BP NOS youth were more likely to develop hypomania (p =.02), or depression (p =.02), and tended to have mood episodes earlier in the eight-year follow-up period. Limitations: RDCyc diagnoses were made retrospectively and followed stringent criteria, which may highlight differences that, under typical clinical conditions and more vague criteria, would not be evident. Conclusion: There were few differences between RDCyc and BP NOS youth. However, the ways in which the groups diverged could have implications; chronic subsyndromal mood symptoms may portend a severe, but ultimately non-bipolar, course. Longer follow-up is necessary to determine the trajectory and outcomes of CycD symptoms
Dexamethasone impairs the expression of antimicrobial mediators in lipopolysaccharide-activated primary macrophages by inhibiting both expression and function of interferon β
Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNβ. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNβ by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNβ-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNβ. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.</p
- …