2,595 research outputs found

    Climate model simulation of the South Indian Ocean Convergence Zone: mean state and variability

    Get PDF
    Evaluation of climate model performance at regional scales is essential in determining confidence in simulations of present and future climate. Here we developed a process-based approach focussing on the South Indian Ocean Convergence Zone (SIOCZ), a large-scale, austral summer rainfall feature extending across southern Africa into the southwest Indian Ocean. Simulation of the SIOCZ was evaluated for the Coupled Model Intercomparison Project (CMIP5). Comparison was made between CMIP5 and Atmospheric Model Intercomparison Project (AMIP) models to diagnose sources of biases associated with coupled ocean-atmosphere processes. Models were assessed in terms of mean SIOCZ characteristics and processes of interannual variability. Most models simulated a SIOCZ feature, but were typically too zonally oriented. A systematic bias of excessive precipitation was found over southern Africa and the Indian Ocean, but not particularly along the SIOCZ. Excessive precipitation over the continent may be associated with excessively high low-level moisture flux around the Angola Low found in most models, which is almost entirely due to circulation biases in models. AMIP models represented precipitation more realistically over the Indian Ocean, implying a potential coupling error. Interannual variability in the SIOCZ was evaluated through empirical orthogonal function analysis, where results showed a clear dipole pattern, indicative of a northeast-southwest movement of the SIOCZ. The drivers of this shift were significantly related to the El Niño Southern Oscillation and the subtropical Indian Ocean dipole in observations. However, the models did not capture these teleconnections well, limiting our confidence in model representation of variability

    Future precipitation projections over central and southern Africa and the adjacent Indian Ocean: what causes the changes and the uncertainty?

    Get PDF
    Future projections of precipitation at regional scales are vital to inform climate change adaptation activities. Therefore, is it important to quantify projected changes and associated uncertainty, and understand model processes responsible. This paper addresses these challenges for Southern Africa and adjacent Indian Ocean focusing on the local wet season. Precipitation projections for the end of the 21st century indicate a pronounced dipole pattern in the CMIP5 multi-model mean. The dipole indicates future wetting (drying) to the north (south) of the climatological axis of maximum rainfall, implying a northward shift of the ITCZ and South Indian Ocean Convergence Zone, and therefore not consistent with a simple ‘wet-get-wetter’ pattern. This pattern is most pronounced in early Austral summer suggesting a later and shorter wet season over much of southern Africa. Using a decomposition method we determine physical mechanisms underlying this dipole pattern of projected change, and the associated inter-model uncertainty. The projected dipole pattern is largely associated with the dynamical component of change indicative of shifts in the location of convection. Over the Indian Ocean, this apparent northward shift in the ITCZ may reflect the response to changes in the north-south SST gradient over the Indian Ocean, consistent with a ‘warmest-get-wetter’ mechanism. Over land subtropical drying is relatively robust, particularly in the early wet season. This has contributions from dynamical shifts in location of convection, which may be related to regional SST structures in the Southern Indian Ocean, and the thermodynamic decline in relative humidity. Implications for understanding and potentially constraining uncertainty in projections are discussed

    The COMBS survey I : Chemical Origins of Metal-Poor Stars in the Galactic Bulge

    Get PDF
    19 pages, 5 tables, accepted to MNRASChemistry and kinematic studies can determine the origins of stellar population across the Milky Way. The metallicity distribution function of the bulge indicates that it comprises multiple populations, the more metal-poor end of which is particularly poorly understood. It is currently unknown if metal-poor bulge stars ([Fe/H] <−1 dex) are part of the stellar halo in the inner most region, or a distinct bulge population or a combination of these. Cosmological simulations also indicate that the metal-poor bulge stars may be the oldest stars in the Galaxy. In this study, we successfully target metal-poor bulge stars selected using SkyMapper photometry. We determine the stellar parameters of 26 stars and their elemental abundances for 22 elements using R∼ 47 000 VLT/UVES spectra and contrast their elemental properties with that of other Galactic stellar populations. We find that the elemental abundances we derive for our metal-poor bulge stars have lower overall scatter than typically found in the halo. This indicates that these stars may be a distinct population confined to the bulge. If these stars are, alternatively, part of the innermost distribution of the halo, this indicates that the halo is more chemically homogeneous at small Galactic radii than at large radii. We also find two stars whose chemistry is consistent with second-generation globular cluster stars. This paper is the first part of the Chemical Origins of Metal-poor Bulge Stars (COMBS) survey that will chemodynamically characterize the metal-poor bulge population.Peer reviewedFinal Published versio

    Proteomic Analysis of a Noninvasive Human Model of Acute Inflammation and Its Resolution: The Twenty-one Day Gingivitis Model

    Get PDF
    The 21-day experimental gingivitis model, an established noninvasive model of inflammation in response to increasing bacterial accumulation in humans, is designed to enable the study of both the induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral fluid comprising a serum transudate and tissue exudates, by LC−MS/MS using Fourier transform ion cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane proteins were detected. Fusobacterium species have previously been associated with periodontal health or disease. The human proteins identified spanned a wide range of compartments (both extracellular and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties, and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach. Clusters of proteins that associated with changes to the clinical parameters included neuronal and synapse associated proteins

    An Analysis of Current and Projected Rural Older Adult Legal Services Needs

    Get PDF
    Maine is now the oldest state in the nation, and is one of the most rural states. A legal needs assessment of older adults in Maine was conducted by analyzing the findings from recent research conducted in six other states and service data from Maine Legal Services for the Elderly over a one-year time period. The six states analyzed were Kentucky, Michigan, Nevada, North Dakota, Ohio, and Utah. There were a total of over 7,300 older adults that responded to the legal needs surveys. The assessment concluded that the high-level service needs included the following: health insurance, government benefits, estate planning, and personal finances and consumer issues. Other needs included help with housing, abuse, employment, and family matters. This assessment was a crucial project in establishing means to plan to distribute a legal needs survey in Maine

    CO(2) Diffusion in Polar Ice: Observations from Naturally Formed CO(2) Spikes in the Siple Dome (Antarctica) Ice Core

    Get PDF
    One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified

    Using Causal Loop Diagrams to Conceptualize Groundwater as a Social-Ecological System

    Get PDF
    Groundwater systems are social-ecological systems (SES) in which human communities, groundwater dependent ecosystems and groundwater resources are linked, and therefore, cannot be studied in isolation. Complex adaptive systems are characterised by non-linear relationships and feedbacks between the system variables. Modeling feedbacks between social and ecological variables of groundwater systems requires a&#13; shift from traditional hydrogeological studies to more holistic approaches that simulate groundwater as a SES. A framework was developed to study and manage groundwater as a social-ecological system. Operationalizing the framework to develop empirical models that consider the social and ecological aspects of groundwater dynamics requires translating the framework components into measurable model inputs that capture the key relationships between social and ecological components. Causal loop diagrams (CLD) are an ideal tool for translating between a conceptual framework and an operational, empirical model. Causal loop diagrams can reveal system complexity associated with the interaction of social, ecological and hydrological components, and identify key inputs that need to be considered to model groundwater as a SES. This paper applies CLD to conceptualize the feedbacks between the social, ecological and hydrological components&#13; of a groundwater system. The concept is applied to the groundwater system in the island of Nauru, and shows that two balancing feedbacks help maintain the system in a precarious state of usability while several reinforcing feedbacks in the social subsystem apply constant pressure to the system. The CLD reveals that the social subsystem is large and complex, even though the island population is small (approximately 10,000 people). It also demonstrates that the social system is by far the larger disruptor and has the greater potential to alter system states

    Solar Power System Design for the Solar Probe+ Mission

    Get PDF
    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity

    The Heterogeneity of Ecosystem Services across the Riverine Landscape of the Koshi River Basin, Nepal

    Get PDF
    A foundational tenet of the ecosystem services concept is that they arise from biophysical processes. Riverine landscapes are process-response systems where river flow and geomorphology generate a heterogeneous physical template that influences ecological processes, suggesting that the supply of ecosystem services in riverine landscapes should be congruent with the character and heterogeneity of the physical template. In this study, we examine the congruency between the physical template (river functional process zones; FPZs) and the supply of river flow dependent ecosystem services from riverine landscapes of the Koshi River Basin, Nepal. The supply of ecosystem services was congruent with FPZs. Social factors were shown to mediate the use and value of ecosystem services between FPZs. Heterogeneity of the physical template interacts with place, social activity, and demography to influence the use and potential value of ecosystem services across the riverine landscape. These spatial patterns of greater use of some types of riverine ecosystem services in certain areas of the riverine landscape are indicative of a highly coupled agricultural or "green loop" social-ecological system (SES) and show that maintaining riverine template heterogeneity is an important element of this green loop SES that supports 40 million people in the Koshi River Basin
    corecore