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ABSTRACT. One common assumption in interpreting ice-core CO2 records is that diffusion in the ice
does not affect the concentration profile. However, this assumption remains untested because the
extremely small CO2 diffusion coefficient in ice has not been accurately determined in the laboratory. In
this study we take advantage of high levels of CO2 associated with refrozen layers in an ice core from
Siple Dome, Antarctica, to study CO2 diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical
conductivity and Ca2+ ion concentrations to show that substantial CO2 diffusion may occur in ice on
timescales of thousands of years. We estimate the permeation coefficient for CO2 in ice is ��4�
10–21molm–1 s–1 Pa–1 at –238C in the top 287m (corresponding to 2.74 kyr). Smoothing of the CO2

record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the
firn. However, simulations for depths of �930–950m (�60–70 kyr) indicate that smoothing of the CO2

record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via
liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.

INTRODUCTION
Carbon dioxide (CO2) is the most important greenhouse gas
directly impacted by human activities. Ancient air preserved
in polar ice cores provides extremely important information
about the functioning of the carbon cycle in the past (e.g.
Etheridge and others, 1996; Fischer and others, 1999; Petit
and others, 1999; Kawamura and others, 2003; Ahn and
others, 2004; EPICA Community Members, 2004; Sie-
genthaler and others, 2005). The reconstructed records
extend direct measurements of atmospheric CO2 concen-
trations, which started in 1958 (Keeling, 1960), and may
help us predict future climate under rapidly increasing CO2

more accurately.
The integrity of an ice core as a reliable archive depends

on the incorporation followed by the preservation of the
original atmospheric signal. It is well known that atmos-
pheric records are smoothed, due to diffusion in the firn
column and gradual air trapping in the bubble close-off zone
(e.g. Schwander and others, 1988; Trudinger and others,
2002; Spahni and others, 2003). However, CO2 diffusion in
ice after the air is trapped in bubbles is poorly understood,
because the diffusion coefficient is too small to be precisely
measured in the laboratory (Hondoh, 1996). This uncertainty
also limits our understanding of rapid CO2 changes in the
atmosphere.

The permeation coefficient (solubility� diffusion coef-
ficient) quantifies gas diffusion in solids. Recent results from
a molecular dynamics simulation (Ikeda-Fukazawa and
others, 2004) show that CO2 molecules can diffuse orders
of magnitude faster in ice than indicated by previous
estimates that were based on an interstitial mechanism
(Ikeda and others, 2000). The fast diffusion may be due to a
new mechanism called the breaking-bond mechanism,
where hydrogen bonds break and CO2 hops between stable

sites in ice crystals (Ikeda-Fukazawa and others, 2004).
However, to date, no good observational estimate of CO2

diffusion in polar ice cores has been reported.
In this study we take advantage of natural CO2 spikes in

an ice core associated with refrozen melt layers (hereafter
melt layers) to study diffusion that occurred in the ice matrix
over thousands of years. We use the gradual decrease of
CO2 concentration away from the melt layers, combined
with high-resolution analyses of Ca2+ ion, ECM (electrical
conductivity measurements), Xe/Ar and Kr/Ar of trapped air
to quantify CO2 diffusion in ice. We provide an estimate of
the CO2 permeation coefficient in the ice, and discuss the
implications of the results for the preservation of CO2 signals
in ice cores.

MATERIALS AND METHODS
The Siple Dome (Antarctica) ice core was drilled between
1997 and 1999. The site is at 81.668 S, 148.828W, with
a present-day annual mean temperature of –25.48C
(Severinghaus and others, 2001) and accumulation rate of
12.4 g cm–2 a–1w.e. The total depth of the core is 1003.8m.
While summer air temperatures were generally well below
the melting point (Das and Alley, 2005), surface melting
could occur during brief summer warm periods. This
happened zero to two times per century during the Holo-
cene (Das and Alley, 2008).

CO2 measurements were made at the Scripps Institution
of Oceanography (SIO) on ice containing bubbles that also
included some of the visually distinctive melt layers in the
Siple Dome A core (Fig. 1). In each 1 cm depth interval ice
samples of 4–6 g were used, and the outer 0.5 cm of the
samples was removed with a bandsaw to reduce the pos-
sibility of contamination from present atmospheric CO2. The

Journal of Glaciology, Vol. 54, No. 187, 2008 685



gas extraction and infrared (IR) spectroscopic methods used
were described by Ahn and others (2004), and are similar to
previous methods (Wahlen and others, 1991; Smith and
others, 1997a, b; Fischer and others, 1999). Trapped air was
extracted from the ice by mechanical crushing in a double-
walled crusher cooled to about –408C using flowing cold
ethanol. The liberated air was collected in small cold traps
chilled by closed-cycle helium refrigerators to a temperature
of �32K. Trapped air samples were liberated by heating the
traps to –608C and then transferred to an IR absorption cell
held at constant pressure and temperature. IR absorption
measurements were made several times on each gas sample
with a tunable diode laser. The single-mode IR laser output
was scanned across a single vibrational–rotational molecu-
lar absorption line of CO2 at Doppler resolution. To
calibrate the instrument, measurements were made with
three air standards of precisely known CO2 concentrations
of 163, 240 and 330ppm. (�0.01 ppm.; personal commu-
nication from Carbon Dioxide Group at SIO, 2004) . The
standards were introduced over three of the crushed ice
samples. This calibration procedure was performed each
day. The internal precision was �2 ppm. in the concen-
tration range 163–330ppm.

Noble-gas ratios (d132Xe/36Ar, d84Kr / 36Ar and d40Ar /
36Ar) were analyzed in order to quantify the amount of
refrozen melt. These permit us to estimate how much CO2

originated from the meltwater. The gas extraction and
measurement on a dual viscous-inlet Finnigan MAT 252
mass spectrometer at SIO have been described previously
(Severinghaus and others, 2003; Severinghaus and Battle,
2006; Headly and Severinghaus, 2007). The depth resolution
(4–6 cm) for the noble gases was poorer than the CO2

resolution (1 cm) because a larger ice sample was required
for the noble-gas measurements. Around 40–60 g of ice and
two stir bars were put in chilled glass vessels, which were
attached to a vacuum line. The ambient air was evacuated
from the vessel and line for 40min, after which we closed the
valve to stop pumping, and the ice was allowed to melt. The
air released from the air bubbles was cryogenically (liquid
He) concentrated at 10K into a stainless-steel dip tube. After
warming to room temperature, the gas sample was exposed

to a Zr /Al getter at 9008C for 10min to destroy all the
reactive gases, followed by 2min at 3008C to remove H2.
After the gettering process, the remaining noble gases were
transferred into a sample tube at 10K. Finally, ultra-high
purity N2 equal to ten times the noble-gas pressure in the
vacuum line was added to the sample to add bulk suitable for
mass spectrometry. Samples were run against aliquots of a
standard gas mixture of commercially obtained N2, Ar, Kr
and Xe. d132Xe / 36Ar, d84Kr / 36Ar and d40Ar / 36Ar were
normalized using clean marine air outside the laboratory.
The pooled standard errors of the triplicate measurements for
the Greenland Ice Sheet Project 2 (GISP2) ice core of the
Holocene were 3.77% and 1.56% for d132Xe/36Ar and
d84Kr / 36Ar, respectively, for the measurement conditions.

For Ca2+ ion concentration measurements, we used �5 g
of ice from the same depths used for CO2 concentration
measurements. Ice was prepared at SIO and measured at the
Climate Change Institute, University of Maine, using
Dionex-500 ion chromatography, where calcium was meas-
ured on a CS12A cation-exchange column with 25mM
methanesulfonic acid eluent, a self-regenerating suppressor
and a conductivity detector. Sample size was 500 mL.

RESULTS
Excess CO2 associated with melt layers
The annual mean temperature at Siple Dome is –25.48C
(Severinghaus and others, 2001). However, the site has
experienced occasional melting during austral summers
(0–2 melt events per century during the Holocene) (Das and
Alley, 2008). The meltwater formed on the snowpack surface
percolates into the firn and refreezes at some depth, but
rarely percolates >0.2m, as shown in Figure 2. The snow
layer where the melt refreezes is in the form of a fine-crystal
size crust that was formed during the previous winter, and
has a strong capillary force (Das and Alley, 2005). Melt
layers preserved in the Siple Dome ice core are easily
identified visually (Fig. 1) due to lower gas content and
reduced bubble size, compared to normal bubbly ice.

A 30 cm long ice sample from a depth of 286.7–
287.0m was intensively studied (Fig. 1). The age of the ice is

Fig. 1. Photographs of air bubbles in the Siple Dome ice core: (a) microphotographs of air bubbles around melt layers that were visually
defined by small bubbles and relatively transparent layers as shown in (b).

Ahn and others: CO2 diffusion in polar ice686



�3.04 kyr BP (thousand years before AD1950), and the gas
age is �2.74 kyr BP (Taylor and others, 2004; Brook and
others, 2005). Annual ice layers are �5–9 cm thick at this
depth (Taylor and others, 2004). This section of ice core
contains two melt layers (�1 cm thick), identified by smaller
bubble sizes than in the surrounding ice (Fig. 1). The upper
(left) melt layer, M1, is thicker than the lower (right) melt
layer, M2 (Fig. 1). Distinct dark patches (due to less light
scattering in Fig. 1) between M1 and M2 have small bubbles
as seen in M1 and M2, suggesting other melt features that do
not continue horizontally.

Due to the high solubility of CO2 in liquid water
(Table 1), we expect CO2 concentrations in the melt layer
to be higher than those in normal bubble ice (Stauffer and
others, 1985). Assuming an atmospheric CO2 concentration
of 278 ppm (matm/atm) (Indermühle and others, 1999) at the
gas age of 2.74 kyr BP and surface pressure at Siple Dome of
937 hPa, we expect 16 230ppm CO2 (mmol CO2/mol total
air) dissolved in 08C meltwater in equilibrium, 58 times
greater than in the atmosphere (Table 1). If a thin film of
snowmelt attains solubility equilibrium with the atmos-
pheric air at the surface, and then refreezes rapidly at some
greater depth, the excess CO2 in the meltwater can be
trapped and preserved in small bubbles in the melt layer.
These bubbles can be preserved through the firn meta-
morphism process and incorporated in mature ice. The CO2

concentration gradient between the melt layer and the
neighboring ‘normal’ bubble ice may then cause diffusion
through the ice. Excess CO2 (CO2 concentration observed in
ice minus atmospheric CO2 concentration) would not be
preserved in the melt layer if degassing had occurred fully
before the meltwater refroze. Preservation of bubbles in

melt layers suggests that refreezing is not slow enough for
effective degassing.

Our high-resolution (depth interval of 1 cm) study shows
that the CO2 concentration in bubbles gradually decreases
from 750 to 285 ppm away from M1. Another, smaller, peak
is also found around M2 (Fig. 3). CO2 records from colder
Antarctic ice-core sites indicate atmospheric concentrations
of 278 ppm for the age of our samples (Indermühle and
others, 1999). The CO2 concentrations in the Siple Dome
samples are therefore greater by up to 470ppm (excess
CO2), and clearly do not represent atmospheric values.

The existence of refrozen meltwater in M1 and M2 is
supported by our analyses of 132Xe/36Ar and 84Kr /36Ar as
shown in Figure 3. Xe/Ar and Kr /Ar in glacial ice are useful
indicators of extensive snowmelting and refreezing, as Xe
and Kr are about four and two times as soluble in liquid
water as Ar, respectively (Severinghaus and others, 2003).
Our data show significantly enriched Xe/Ar and Kr/Ar for
ice that includes the visible melt layers, M1 and M2, relative
to normal layers, indicating the existence of the refrozen
meltwater in M1 and M2.

In order to quantitatively determine the excess CO2

resulting from the refrozen melt, we use the melt-sensitive
isotope ratios, 132Xe/36Ar and 84Kr/ 36Ar. Considering the
solubility of the noble gases at 08C, the gravitational
fractionation in the firn layer and the Ar loss from the
bubbles during sample handling or bubble close-off, our
calculation using the Xe/Ar and Kr/Ar data gives the volume
ratio of liquid water to pore air (see Appendix B for details).
This is accomplished by solving three equations for three
unknowns with three observed quantities: Xe/Ar, Kr /Ar and
40Ar /36Ar.

Fig. 2. Schematic diagram for the formation of a refrozen melt layer in the Siple Dome ice cores based on Das and Alley (2005). Snow melts
occasionally in summer under strong insolation. The melt infiltrates (dashed arrow) the summer snow layer (light gray area) and stops and
refreezes in the winter layer (dark gray area) by a strong capillary force due to the small size of snow grains.

Table 1. Solubilities and diffusion coefficients of air components in fresh water for Siple Dome

Air N2 O2 Ar CO2 Kr Xe

Xatm 100% 78.08%a 20.95%a 0.93%a 278ppmb 1.14ppma 0.087ppma

XH2O 100% 62.38%c 34.33%d 1.68%c 16230ppme 4.21ppmf 0.679ppmg

DH2O 1.5h 1.4h 1.3h 1.2h 0.93i 0.88i 0.66i

Xatm: composition of atmospheric air; XH2O: air composition dissolved in water at 08C and 937mbar; DH2O: diffusion coefficient (10–9m2 s–1) in water at 08C.
aLide (1995). bAtmospheric CO2 at 2.74 kyr BP (Indermühle and others, 1999). cHamme and Emerson (2004). dGracia and Gordon (1992). ePilson
(1998). fWeiss and Kyser (1978). gWood and Caputi (1966). hWise and Houghton (1966). iJähne and others (1987).
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For the ice sample that includes normal layer, M1 and the
partial-melt layer between M1 and M2, a volume ratio of
liquid water to pore air of 1.38 is obtained. Using the total
air in the sample (4.7�0.5 cm3 STP (standard temperature
and pressure)), we calculate that the volume of refrozen melt
is 6.5�0.7 cm3. The total air content of the ice samples was
calculated with (1) the volumes of ice from the normal and
melt layers, (2) bubble-volume ratios (air-content ratios) of
normal melt layers and (3) the air content of the normal
layers, which was estimated from the average over the
Holocene as the air content is almost constant in that period
(Severinghaus and Battle, 2006). The estimated volume of
refrozen melt is comparable to our visual observation. The
volume of visual melt layer (defined by ice with smaller
bubbles than in the normal layer) is 16.4�1.4 cm3 (13.9�
0.7 cm3 from M1; 2.5� 0.7 cm3 from the partial-melt patch
between M1 and M2). This visual refrozen ice volume is
apparently bigger than our estimation of the volume of
refrozen melt because the volume of the visual melt layer
includes pre-existing ice (firn), where meltwater filled the
void space and refroze. The difference between estimates
based on Xe/Ar, Kr /Ar, 40Ar /36Ar and the visual observation
is 40� 8%, close to the porosity of snow at the surface, 56%
(ice density at the surface ¼ 0.4 g cm–3; personal commu-
nication from J. Fitzpatrick, 2007), indicating that Xe, Kr and
Ar were close to equilibrium with the ancient atmosphere
and were trapped in melt layers. Therefore, we can also

expect that the melt at the surface was in equilibrium with
ancient atmospheric CO2 which was trapped in M1.

For additional confirmation for our diffusion model, we
estimate the total CO2 trapped in M1 at the snow surface
with the calculated volume of purely refrozen melt in M1
from Xe/Ar and Kr /Ar measurements:

Half of the excess CO2 in M1 before diffusion in ice
(mol cm–2)

¼ half of the melt layer thickness (cm)

� volume fraction of purely refrozen melt in M1 from
Xe/Ar and Kr /Ar

� ice density (g cm–3)

� solubility of CO2 in water at 08C (mol g–1)

¼ (0.5�1.23)� (0.416�0.059)�0.917� (1.998�10–8)

¼ 4.7� 0.7�10–9mol cm–2.

This agrees with the integration of the observed excess CO2

in the upper part of M1 (including the upper half of M1) of
�5.4�10–9mol cm–2. This agreement supports the assertion
that the CO2 profile around the melt layers was formed by
diffusion from the melt layer. The accuracy of the above
estimate is possibly limited by different degrees of equili-
bration of different gases in the meltwater. For example, Xe
should approach equilibrium more slowly than CO2, due to
its lower diffusivity but within the same order (Table 1). In

Fig. 3. Variation of ECM (proxy for H+) in units of mS (microsiemens), Ca2+ ion, Xe/Ar and Kr/Ar (melt-layer indicators) and CO2 around the
melt layers shown in Figure 1. The d(Xe/Ar) and d(Kr /Ar) values are normalized to present atmospheric air. The minor and rather constant
enrichment of Kr and Xe are due to gravitational settling in the firn and do not indicate substantial melting/refreezing. Finely hatched vertical
bars indicate melt layers. The thicknesses and positions of the melt layers vary between the two bars around each melt layer.
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this estimate we assume gas diffusion in ice does not change
the profile of Xe/Ar and Kr /Ar.

CO2 diffusion in the ice
The gradual decrease in CO2 away from the melt layers is
consistent with CO2 diffusion over the past 2.74 kyr, and
agrees reasonably well with predictions from a molecular
volume-diffusion model (Fig. 4) (Neftel and others, 1983;
see Appendix A for details). For simple one-dimensional
curve fitting, we utilize the CO2 mixing ratio data from the
normal and melt layers. The CO2 concentrations from the
partial-melt layer between the two melt layers have higher
values than those in the fitting curve, due to additional CO2

in the partial-melt patches. Thinning of vertical layers with
increasing depth due to the flow of the ice is taken into
account. In our numerical approach, we utilize an age–
depth profile from CH4 correlation with the Greenland ice
core (Brook and others, 2005) and a depth–density profile
(personal communication from J. Fitzpatrick, 2007) for the
real depth, pressure and porosity parameters in each time-
step rather than estimation based on the assumption of
constant snow accumulation rate and porosity (Neftel and
others, 1983). For example, the porosity profile for the
numerical modeling was estimated from the density profile
for the top 300m (� ¼ 1 – (�bubbly ice /�bubble-free ice )) rather
than using confining ice pressure, because air pressure in
bubbles at shallow depth is not in equilibrium with the
confining hydrostatic ice pressure, as shown in the top
300m of the Vostok (Antarctica) ice core (Lipenkov, 2000).
For depths >300m we obtained porosity from the gas
content (�0.11 cm3 air (STP) g–1 ice) (Severinghaus and Bat-
tle, 2006) divided by confining pressure in the atmosphere
(personal communication from J. Fitzpatrick, 2007) and the
density of bubble-free ice (0.917 g cm–3). Two approaches
were used for estimating the vertical thinning factor, � (see
Appendix A for details): (1) assuming constant strain-rate
thickness and (2) utilizing the paleo-accumulation rate
estimated from the isotopic temperature proxy (Brook and
others, 2005). The latter estimations of � are 89% and 57%

of the former for the last 2740 years and �18.5–80 kyr,
respectively. However, in the 2740 year modeling and curve
fitting, using the two different thinning factor approaches
gave no difference in the estimated permeation coefficient
within the range of uncertainty of curve fitting.

We assume that the permeation coefficient (diffusion
constant� solubility) is almost constant over a wide range of
solubility (see Appendix A), and the same value of the
permeation constant of CO2 in ice was applied for the two
melt layers. The good fit of the model to the data supports
our proposition that the CO2 originally trapped in the melt
layer has diffused through the ice for thousands of years. The
baseline CO2 levels far from the melt layers are still slightly
higher than in the Taylor Dome (Antarctica) and Dome C
(Antarctica) ice records (Indermühle and others, 1999), by
11 ppm on average. The reason for this discrepancy is not
clear, but may be due to microscale refreeze of melt (Ahn
and others, 2004) or differences in laboratory standard
scales for CO2.

Alternative explanations for the excess CO2 in the ice
adjacent to the distinctive melt layers include: (1) visibly
undetected micro-melt layers, (2) carbonate–acid reaction
(Delmas, 1993; Anklin and others, 1995, 1997; Barnola and
others, 1995; Smith and others, 1997a, b) and (3) oxidation
of organic compounds abiologically (Tschumi and Stauffer,
2000) or biologically (Campen and others, 2003).

If the excess CO2 of hundreds of ppm around M1 and M2
originated from micro-melt layers, we would observe the
same characteristics in the excess Xe/Ar and Kr /Ar as in the
excess CO2. However, we do not detect significantly
elevated Xe/Ar and Kr /Ar above M1 and below M2, in
areas where we do see significant excess CO2 (Fig. 3). These
observations strongly support our idea that excess CO2 in
the normal layer formed by diffusion from the melt layers. In
between M1 and M2, the resolution prevents us from
comparing the CO2 with Xe/Ar or Kr /Ar. Different degrees of
saturation of the gas species and different degassing during
freezing may explain the difference between CO2 and the
Xe/Ar and Kr /Ar profiles. However, the diffusion coefficients

Fig. 4. Comparison of excess CO2 concentration from the observations (circles) to the prediction by modeling (solid curve for M1 and dashed
curve for M2). c0 and c are the CO2 concentrations before and after diffusion, respectively. Different c /c0 values are used for M1 and M2.
The horizontal bars through circles are depth intervals of samples. Gray areas denote melt layers (M1 and M2) with averaged thicknesses and
positions. The actual thicknesses vary along the melt layers, as noted in Figure 3. The model curves are fitted to CO2 observations in the melt
and normal layer ice, but not to observations between the two melt layers, where partial-melt patches exist.
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of these gas species in water are of the same order (Table 1),
supporting our diffusion model. It is important to note that
we are assuming that diffusion of Xe, Kr and Ar in ice is
negligible compared to that of CO2. However, recent work
suggests that Ar may diffuse more rapidly in ice than Kr and
Xe (Severinghaus and Battle, 2006). If Ar is more mobile
than Kr and Xe, the Kr/Ar and Xe/Ar ratios will decrease
outside the melt layers but increase in the melt layers. To
date, the permeation coefficients of Xe, Kr and Ar are
unknown. Thus, exact evaluation of this effect remains
elusive. However, the good agreement of two noble-gas
datasets in all layers other than melt layers would have to be
fortuitous if this effect is important. For this reason we
consider the scenario unlikely.

The concentration of dissolved Ca2+ can be used to esti-
mate the upper limit of the amount of CaCO3 that potentially
could have reacted with H+. There is no significant correl-
ation between the excess CO2 and the dissolved Ca2+ or ECM
(a proxy for H+), as shown in Figure 3. Moreover, assuming
that all the Ca2+ is produced from the reaction between
CaCO3 and H+, the potential excess CO2 is �17 ppm on
average. Thus, the amount of Ca2+ is too small to explain our
observations (excess CO2 of up to 470ppm); 1 mg Ca2+ per
kilogram of ice can explain at most 7 ppm of excess CO2 by
the carbonate–acid reaction.

Oxidation of organic compounds has been proposed to
be at least as important as acid–carbonate reactions for CO2

production (e.g. 2H2O2þHCHO ! 3H2OþCO2) in some
ice cores (Tschumi and Stauffer, 2000). However, H2O2 data
for the top 100m of the Siple Dome ice core show H2O2

concentrations near or below the detection limit of
�0.02 mm, except at 0–2.5m depth (McConnell, 1997).
H2O2 is one of the major oxidants in snow. These H2O2

concentrations at Siple Dome are much lower than those
found in other Antarctic ice cores (McConnell, 1997). The
data for other important oxidants such as CH3COO– and
HCOO– (Tschumi and Stauffer, 2000) are not available.

However, the excess CO2 due to this process may be less
than in Greenland ice cores, where the dust and oxidant
contents are greater than in Antarctic ice cores by an order
of magnitude and several times, respectively (Tschumi and
Stauffer, 2000), and the excess CO2 is �30 ppm for the
Holocene (Anklin and others, 1995; Barnola and others,
1995). Thus, oxidation of organic compounds cannot
explain the high excess CO2 of up to 470ppm.

We conclude that the three alternative mechanisms
cannot explain the excess CO2 distribution around the melt
layers, and that the concentration profile is most likely to
have formed by the diffusion of CO2 through the ice matrix
from the refrozen melt (M1, M2 and partial-melt) layers.
However, we cannot exclude the possibility of invisible
micro-melt layers due to our unproved assumption that
diffusion did not change Xe/Ar and Kr /Ar profiles. In this
case, our estimation of the permeation coefficient of CO2 in
the following part of this section would be a maximum and
provide an upper limit on the impact on CO2 mobility of the
ice-core records.

From the best-fit calculation, the permeation coefficient
of CO2 (the product of the diffusion constant and the solu-
bility) in ice is �4� 10–21m–1 s–1mol Pa–1 at –238C (time-
averaged temperature) as seen in Figure 4. We find higher
CO2 concentrations in the samples that include partial-melt
layers than in the modeling because the former have lower
gas content than the normal bubble ice. Our result for the
permeation coefficient of CO2 is independent of the Xe/Ar
and Kr/Ar data. We estimate that the amplitudes of the CO2

variation in the measured core segment are �30% and
�20% of the initial amplitude, c0, for M1 and M2,
respectively (Fig. 5). The different ratios are due to the
different melt-layer thicknesses.

Our result for the CO2 permeation coefficient is an order
of magnitude greater than that estimated from the Dye 3
(Antarctica) ice core (1.3� 10–22m–1 s–1mol Pa–1 at –208C)
(Neftel and others, 1983). This discrepancy is probably due to

Fig. 5. Modeling of the smoothing of a 10 year spike (thick solid line) of the atmospheric CO2 record by diffusion in the deep Siple Dome ice
sheet. Distance from the center of the spike is converted to the timescale. Smoothing by gas-age distribution (thick dash–dot curve) is
estimated assuming a Gaussian distribution (� ¼ 12.74 years; full width at half height ¼ 30 years). Two sets of thinning factors are used: �1,
assuming constant strain rate with depth, and �2, utilizing snow accumulation rates and annual-layer thicknesses (see Appendix A for
details). c0 and c are the CO2 concentrations before and after diffusion, respectively.
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the inaccurate assumption that the Dye 3 ice core has never
changed to clathrate ice from bubbly ice (Neftel and others,
1983). The Dye 3 ice-core segment studied for diffusion was
selected from the bottom of the bubble-ice–clathrate tran-
sition zone (depth ¼ 1616m; 31.1 kyr), where gas species go
into the ice lattice and bubbles shrink and finally disappear
(Neftel and others, 1983). The formation of clathrate begins
at a depth of 1200m (14.7 kyr) (Neftel and others, 1983) and
possibly significantly changes the diffusion of CO2. Salama-
tin and others (1998) deduced that the diffusion coefficient of
air in hydrate crystals is at least two orders of magnitude less
than the diffusion coefficient of air in the ice matrix. Thus,
CO2 may be bound more in clathrate crystals than in ice. In
addition, the solution of gas in clathrate crystals into the ice
matrix is much less dependent on hydrostatic pressure than in
bubbles, following Equation (A3).

Dividing the permeation coefficient by the solubility
gives the diffusion coefficient. Unfortunately, the solubility
of CO2 in ice is not well known at present, as it is too small
to be measured precisely (Hondoh, 1996). We calculate
the CO2 diffusion coefficient in the ice matrix at –238C to
be >1.3� 10–13m2 s–1 for a solubility of CO2 in ice <4.5�
10–8molm–3 Pa–1 (Neftel and others, 1983). Improved
measurement of CO2 solubility in ice in the future would
allow a better estimate of the diffusion coefficient of CO2 in
polar ice. We estimate the solubility of CO2 in ice to be
5.1�10–11molm–3 Pa–1 at –238C, using the permeation
coefficient divided by the modeled diffusion coefficient of
7.8�10–11m2 s–1 (Ikeda-Fukazawa, 2004, table 3).

Smoothing of the CO2 record in polar ice
Significant diffusion for thousands of years in the ice sheet
might smooth rapid atmospheric changes and this would be
extremely important in interpreting ice-core records. Well-
known smoothing processes include gas diffusion in the firn
layer and gradual bubble close-off at the transition from firn
to ice, the effect of which can be roughly approximated by a
Gaussian filter corresponding to the gas-age distribution
(e.g. Schwander and others, 1988; Trudinger and others,
2002; Spahni and others, 2003).

Based on our observations and modeling, the smoothing
of the CO2 concentration by diffusion in deep ice is of
the order of a few centimeters in our samples and, thus,
negligible compared to the smoothing by the gas-age
distribution at that depth (�30 years, corresponding to dif-
fusion in the depth interval of �100 cm). However, at greater
depths the smoothing by CO2 diffusing through the ice matrix
may become larger.

A 10 year instantaneous atmospheric CO2 spike (corres-
ponding to 1.55m at the bubble close-off depth) is modeled
with the permeation coefficient obtained in the shallow
Siple Dome ice. The diffusion coefficient may significantly
increase with greater depth due to geothermal warming.
Results from the molecular simulation suggest that the
diffusion coefficient approximately doubles for each 208C
increase in temperature (Ikeda-Fukazawa and others, 2004)
as shown in Table 2. At a depth of 960m (�80 kyr) at a
location near the Siple Dome core site, the ice temperature
reaches –48C (269K) (Engelhardt, 2004), 198C higher than at
the shallow depth where we estimated the CO2 permeation
coefficient. Combining the depth–temperature profile with
the temperature dependence of the diffusion coefficient
(Ikeda-Fukazawa and others, 2004), we calculated permea-
tion coefficients for modeled depths. Solubility of CO2 in ice

was assumed constant because the solubility/temperature
relation is unknown.

The results from the 80 kyr simulations for two different
estimations of thinning factor suggest that diffusion in deep
ice may smooth the CO2 concentration profile on decadal
timescales, and at the age of �60–70 kyr (Siple Dome depths
of �930–950m) may be comparable to smoothing by
diffusion in firn (Fig. 5). There are no decadal CO2 data for
ice that is 80 kyr old. However, the CO2 record from the
Siple Dome ice core shows significant variation of CO2 on
millennial timescales for the past 40 kyr (Ahn and others,
2004). Ice cores from colder sites than Siple Dome would
experience slower CO2 diffusion in deep ice. The formation
of clathrate ice (bubble-free ice) at depths from 500 to
1200m (�25–65 kyr) at other Antarctic cold-drilling sites
(Vostok, Dome Fuji and EPICA Dome C) is expected to result
in highly reduced gas diffusion (Salamatin and others, 1998).

DISCUSSION AND DIRECTIONS FOR
FUTURE WORK
The processes of gas diffusion related to variable physical
properties of ice are still not well known. Thus, our volume-
diffusion model should be investigated further. As discussed
in the previous section, our interpretation of the noble-gas
species is limited due to our lack of knowledge of their
diffusion properties. Nonetheless, our study provides an
important upper limit on the CO2 permeation coefficient in
ice cores. The true value of the permeation coefficient could
be lower than we estimate if micro-melt layers around the
visible melt layers contribute to the excess CO2 in our data.

Processes other than volume diffusion may be important
but are difficult to quantify. For example, there is evidence of
the existence of melt at triple junctions of grain boundaries
in polar ice (Mulvaney and others, 1988). Thus, CO2 may
dissolve and migrate in the liquid vein, while noble-gas
species, with lower solubility, may mostly stay at the original
sites. If this is the case, the diffusion via the liquid vein or ice
grain boundaries may be governed directly by the grain-
growth rate, as suggested from an ion chemistry study
(Barnes and others, 2003).

Our extension of the modeling results at shallow depth
(corresponding to 2.74 kyr BP) to greater depths is limited by
uncertainties in basic parameters and requires further study.

Table 2. Temperature dependence of CO2 diffusion coefficient in ice

Ice-core location Tsurface D

8C m2 s–1

0 1.41�10–10

–5 1.25�10–10

–10 1.10�10–10

Dye 3, Greenland –19.6 8.52�10–11

Siple Dome, Antarctica –25.4 7.24�10–11

Byrd Station, Antarctica –28 6.71�10–11

Taylor Dome, Antarctica –42 4.34�10–11

Dome C, Antarctica –54 2.85�10–11

Vostok, Antarctica –55.5 2.70�10–11

Dome Fuji, Antarctica –58 2.45�10–11

Note: D (diffusion coefficient) is calculated from D ¼ Doexp (–Q /R /T ),
where Do is 9.10� 10–8m2 s–1, Q is 14 700 Jmol–1 and R is 8.314 Jmol–1 K–1

(Ikeda-Fukazawa and others, 2004).
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For example, the assumption of Henry’s law for the CO2

solubility in ice may not be valid through all pressure ranges.
The temperature dependence of CO2 solubility in ice is not
considered since it is unknown. The dependence of the
diffusion coefficient on temperature should be constrained,
based on observations. Moreover, better constraints on the
porosity–depth profile, which is one of the key parameters in
our model, are needed.

In addition, the permeation coefficient of CO2 may vary
from core to core and depth to depth due to the variable
physical properties of the ice. Studies with ice samples from
various physical conditions (e.g. temperature, pressure,
crystal growth rate) with different ice cores will better
constrain the permeation coefficient.

Our estimation of the CO2 concentrations in the melt
layers is based on the experimental results for ice samples
that include both the melt and normal layers. We assume
constant gas extraction efficiency (gas extracted � gas in ice
before extraction) for both the normal and melt layers. If the
gas extraction efficiency varies with the size of the bubbles
(small bubbles in the melt layers and large ones in the
normal layers), our measurements are not precise enough to
detect differences in efficiency. Other techniques that allow
100% extraction efficiency such as sublimation of ice (e.g.
Güllük and others, 1998) or melting of ice (e.g. Kawamura
and others, 2003) could improve the estimation.

Our results also imply the possibility of an artifact in d13C
of CO2 records due to different diffusion rates of 12C and
13C. Another possible implication is change of CO2 mixing
ratio in ice cores during storage.

CONCLUSIONS
Refrozen melt layers in the Siple Dome ice core contain
excess CO2 due to the high solubility of CO2 in the
meltwater. Our analyses of samples from the Siple Dome
ice core show a gradual decrease of CO2 away from two
refrozen melt layers. The excess CO2, combined with noble-
gas data (Xe/Ar, Kr /Ar) and chemical and electrical proper-
ties of the ice, suggest that an initial CO2 spike diffused
through the ice. By modeling the CO2 molecular diffusion,
we calculate the permeation coefficient (the product of
solubility and the diffusion coefficient) of CO2 in ice to be
�4�10–21m–1 s–1mol Pa–1 at –238C. This rate indicates
smoothing of the CO2 record by diffusion is one to two
orders of magnitude smaller than the smoothing by diffusion
in the firn at the depth of 287m (gas age ¼ 2.74 kyr BP) in the
Siple Dome ice, and so does not degrade the record.
However, applying the permeation coefficient to greater
depth (equivalent to tens of thousands of years) in the Siple
Dome ice core suggests an impact on smoothing of the CO2

records on a decadal scale. Processes other than volume
diffusion may be important but are difficult to quantify.
Further studies should include the mechanism of the
diffusion, dependence of the diffusion coefficient on tem-
perature and solubility of the gas in the ice. Formation of
clathrate seems to significantly hinder the CO2 diffusion and
will help preserve atmospheric records.
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APPENDIX A
VOLUME-DIFFUSION MODEL
Elevated CO2 diffuses from a melt layer to bubbles within a
normal layer through the ice matrix. The smoothing of the
CO2 concentration is calculated from molecular volume
diffusion with constant mixing ratio, c0, in a certain width of
the melt layer (Neftel and others, 1983). The CO2 flux by the
diffusion is:

j ¼ �D
dcE
dxeff

, ðA1Þ

where j (molm–2 s–1) is the flux of CO2 by diffusion, D
(m2 s–1) is the diffusion constant of CO2 in ice, cE (molm–3) is
the concentration of CO2 dissolved in the ice and xeff (m) is
the effective vertical distance accounting for thinning by ice
flow. This is related to the original distance, x, and the
thinning factor, �ðtÞ:

xeff ¼ � tð Þx: ðA2Þ
Equation (A2) is needed to incorporate the effect of thinning
on the distance CO2 diffuses in the ice as a layer is buried.
Also, we assume that melt layers are horizontally uniform,
which is likely to be valid for the short distance (a few
centimeters) involved.

The cE is related to the parameter we measure, the CO2

mixing ratio in the bubble air, cB, bubble air pressure, p (Pa),
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as function of time and depth, pðzðtÞÞ, and CO2 solubility in
ice, S (molm–3 Pa–1), according to Henry’s law:

cE ¼ cBpS: ðA3Þ

The total CO2 concentration per unit volume of bubble ice,
ctot (molm–3), requires the porosity of the ice, �, and is:

ctot ¼ cBp�
RT

þ cE: ðA4Þ

The diffusion equation then becomes:

@ctot
@t

¼ 1
R

@

@t
cBp�
T

� �
þ @cE

@t

� �
¼ � dj

dxeff
: ðA5Þ

The middle part of Equation (A5) can be written as:

1
R

@

@t
cBp�
T

� �
þ @cE

@t

¼ 1
RT

p�
@cB
@t

þ cB�
@p
@t

þ cBp
@�

@t

� �� �

� 1
RT 2 cB�p

@T
@t

� �� �
þ S p

@cB
@t

þ cB
@p
@t

� �� �
, ðA6Þ

where we assume S is constant. The second and third terms
in square brackets in Equation (A6) are smaller than that in
the first square bracket with order of >O(102) and >O(103),
respectively. Therefore, we simplify Equation (A6):

1
RT

p�
@cB
@t

þ cB�
@p
@t

þ cBp
@�

@t

� �� �
� 1

RT 2 cB�p
@T
@t

� �� �

þ S p
@cB
@t

þ cB
@p
@t

� �� �

� 1
RT

p�
@cB
@t

þ cB�
@p
@t

þ cBp
@�

@t

� �
: ðA7Þ

As we found 1
RT p� @cB

@t

� �
is greater than the other terms in

Equation (A7) with order of O(10) for most times and
locations in ice for the 2740 year simulation, Equation (A6)
can be written as:

1
R

@

@t
cBp�
T

� �
þ @cE

@t
� p�

RT
@cB
@t

: ðA8Þ

Also, the righthand side of Equation (A5) becomes:

� dj
dxeff

¼ � d
dxeff

�D
dcE
dxeff

� �
¼ D

d2cE
dx2eff

 !
¼ DpS

� tð Þ2
d2cB
dx2

 !
:

ðA9Þ

Thus, Equation (A5) becomes:

@cB
@t

¼ DSRT

�� tð Þ2
d2cB
dx2

: ðA10Þ

For each time-step, we calculate the CO2 mixing ratio in
bubble air for each n th position (C t

n) with a constant
distance interval (�x ¼ 1mm for the 2740 year simulation;
0.155m for the 80 kyr simulation). Equation (A10) can be
discretized as:

C tþ1
n ¼ DSRT�t

� � tð Þð Þ2 �xð Þ2 C t
nþ1 � 2C t

n þ C t
n�1

� �þ C t
n: ðA11Þ

In the finite-difference equation, realistic �ðtÞ, � and p are
estimated for each time-step. The thinning factor, �ðtÞ, is
determined by two different methods: (1) assuming a

constant strain rate with depth, which is

� tð Þ ¼ H � z tð Þ
H

, ðA12Þ

where H is the thickness of the ice sheet and zðtÞ is depth
below the surface, which is estimated from the independent
depth–gas age profile (Brook and others, 2005), and
(2) utilizing the paleo-accumulation rate estimated from
the isotopic temperature proxy (Brook and others, 2005):

� tð Þ ¼ annual thickness at depth from a depth�age profileð Þ
� ice density at depthð Þ
� snow accumulation rate (w:e:Þð Þ: ðA13Þ

A realistic � is estimated from the gas content in ice of
�0.11 cm3 g–1 STP (Severinghaus and Battle, 2006) and
accumulated ice load at depths >300m (personal commu-
nication from J. Fitzpatrick, 2007), assuming that the
pressure of air in bubbles equilibrates with the confining
pressure. At shallow depth (<300m), this assumption is not
valid and � is estimated using ice-density data (personal
communication from J. Fitzpatrick, 2007) at time t :

� tð Þ ¼ 1� � tð Þ
�ice

�ice ¼ 917 kgm�3 for bubble-free ice
� 	

:

ðA14Þ

Hydrostatic pressure, p, is estimated from depth–density
profiles (personal communication from J. Fitzpatrick, 2007).

For the 80 kyr modeling, we use a diffusion coefficient, D,
which varies with temperature (Ikeda-Fukazawa and others,
2004, table 3).

The constant parameters used for the Siple Dome ice
studied are:

H ¼ thickness of the ice sheet ¼ 1003.8m

R ¼ gas constant ¼ 8.314 Jmol–1 K–1

T ¼ absolute temperature ¼ 250K (–238C)

S ¼ solubility of CO2 in ice ¼ 6.45�10–11molm–3 Pa–1

�t ¼ time interval
¼ 3.16� 107 s (1 year) for 2740 year simulation

3.16� 108 s (10 years) for 80 kyr simulation

�x ¼ distance interval
¼ 0.001m for 2740 year simulation

0.155m for 80 kyr simulation

Thickness of CO2 spike (or melt layer) at surface
¼ 0.018m for M1

0.012m for M2

Thickness of 10 year CO2 spike for 80 kyr simulation
¼ 1.55m.

APPENDIX B
VOLUME RATIO OF REFROZEN LIQUID WATER
TO BUBBLE AIR
We have modeled the effects of the formation of melt layers
on dKr/Ar, dXe/Ar and d40Ar /36Ar in air bubbles in ice cores.
The detailed model will be reported elsewhere. Briefly, we
assume that 36Ar, 40Ar, Kr and Xe in air measured in an ice-
core sample are affected only by gravitational settling, melt
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and gas loss as follows (units are moles of gas):

36Arsample ¼ 36Arair bubble þ 36Ardissolved � 36Arlost
40Arsample ¼ 40Arair bubble þ 40Ardissolved � 0:993 36Arlost

� �
Krsample ¼ Krair bubble þ Krdissolved
Xesample ¼ Xeair bubble þ Xedissolved:

We also assume that all the dissolved gas is retained during
the refreezing process. We use this model to invert the dKr/
Ar, dXe/Ar and d40Ar / 36Ar measurements for the firn
diffusive column depth, z, gas loss during ice-core storage,
F, and the volume ratio of refrozen liquid water to bubble air
at ambient pressure, �. We use the equations above, as well
as the ideal gas law ðpV ¼ nRTÞ and the barometric
equation ðp ¼ p0 expðmgz=RT ÞÞ, to derive the following
system of equations, which can be solved by iteration for �,
F and z (all variables defined below):

d40Ar


36Ar

1000
þ 1

� �
measured

¼ 1� 0:993Fð Þem40gz=RT


RT þ S40�

1� Fð Þem36gz=RT=RT þ S36�

dKr=Ar
1000

þ 1
� �

measured
¼ emKrgz=RT



RT þ SKr�

1� Fð Þem36gz=RT=RT þ S36�

dXe=Ar
1000

þ 1
� �

measured
¼ emXegz=RT



RT þ SXe�

1� Fð Þem36gz=RT=RT þ S36�
,

S ¼ solubility (mol L–1 Pa–1)

� ¼ volume ratio of liquid water to pore air

z ¼ depth of diffusive column (m)

R ¼ gas constant (L Pamol–1 K–1)

T ¼ temperature (250K)

F ¼ fraction of Ar lost by gas loss when Kr and Xe are not
being lost

m ¼ mass (kgmol–1)
0.084 for Kr
0.040 for 40Ar
0.036 for 36Ar
0.132 for Xe

g ¼ gravitational acceleration (9.82m s–2).
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