292 research outputs found
Solving the Hubble tension at intermediate redshifts with dynamical dark energy
The current expansion rate of the Universe, the Hubble constant , is an
important cosmological quantity. However, two different ways to measure its
value do not agree -- building a low-redshift distance ladder leads to a higher
value of than inferring it from high-redshift observations in a
CDM cosmology. Most approaches to solve this tension either act at
very low redshift by modifying the local distance ladder, or at high redshift
by introducing new physics that changes the normalization of the inverse
distance ladder. Here we discuss a way to address the Hubble tension at
intermediate redshifts instead. By keeping the low- and high-redshift
normalizations unchanged, we find a violation of the distance duality in the
redshift range where luminosity and angular diameter distances overlap. We
'solve' this problem by introducing a redshift-dependent systematic effect that
brings the luminosity distance into agreement with the angular diameter
distance. The resulting expansion history is no longer compatible with
CDM, but this can be fixed with a dynamical dark energy component. In
this way, we are able to solve the Hubble tension at intermediate redshifts.Comment: 7 pages, 4 figure
Lattice Attacks on NTRU and LWE: A History of Refinements
Since its invention in 1982, the LLL lattice reduction algorithm (Lenstra, Lenstra, Lovasz 1982) has found countless applications. In cryptanalysis, the two most prominent applications of LLL and its generalisations --e.g. Slide, BKZ and SD-BKZ-- are factoring RSA keys with extra information on the secret key via Coppersmith\u27s method and the cryptanalysis of lattice-based schemes.
After almost 40 years of cryptanalytic applications, predicting and optimising lattice reduction algorithms remains an active area of research. While we do have theorems bounding the worst-case performance of these algorithms, those bounds are asymptotic and not necessarily tight when applied to practical or even cryptographic instances. Reasoning about the behaviour of those algorithms relies on heuristics and approximations, some of which are known to fail for relevant corner cases.
Decades after Lenstra, Lenstra, and Lovász gave birth to this fascinating and lively research area, this state of affairs became a more pressing issue recently. Motivated by post-quantum security, standardisation bodies, governments and industry started to move towards deploying lattice-based cryptographic algorithms. This spurred the refinement of those heuristics and approximations, leading to a better understanding of the behaviour of these algorithms over the last few years.
Lattice reduction algorithms, such as LLL and BKZ, proceed with repeated local improvements to the lattice basis, and each such local improvement means solving the short(est) vector problem in a lattice of a smaller dimension. Therefore, two questions arise: how costly is it to find those local improvements and what is the global behaviour as those improvements are applied.
While those two questions may not be perfectly independent, we will, in this survey, focus on the second one, namely, the global behaviour of such algorithms, given oracle access for finding local improvements. Our focus on the global behaviour is motivated by our intent to draw more of the community\u27s attention to this aspect. We will take a particular interest in the behaviour of such algorithms on a specific class of lattices, underlying the most popular lattice problems to build cryptographic primitives, namely the LWE problem and the NTRU problem. We will emphasise on the approximations that have been made, their progressive refinements and highlight open problems to be addressed
Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer
Quantitative extraction of high-dimensional mineable data from medical images
is a process known as radiomics. Radiomics is foreseen as an essential
prognostic tool for cancer risk assessment and the quantification of
intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying
tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET
and CT images of 300 patients from four different cohorts were analyzed for the
risk assessment of locoregional recurrences (LR) and distant metastases (DM) in
head-and-neck cancer. Prediction models combining radiomic and clinical
variables were constructed via random forests and imbalance-adjustment
strategies using two of the four cohorts. Independent validation of the
prediction and prognostic performance of the models was carried out on the
other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88).
Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the
potential of radiomics for assessing the risk of specific tumour outcomes using
multiple stratification groups. This could have important clinical impact,
notably by allowing for a better personalization of chemo-radiation treatments
for head-and-neck cancer patients from different risk groups.Comment: (1) Paper: 33 pages, 4 figures, 1 table; (2) SUPP info: 41 pages, 7
figures, 8 table
Ly as a tracer of cosmic reionization in the SPHINX radiation-hydrodynamics cosmological simulation
The Ly emission line is one of the most promising probes of cosmic reionisation but isolating the signature of a change in the ionisation state of the IGM is challenging because of intrinsic evolution and internal radiation transfer effects. We present the first study of the evolution of Ly emitters (LAE) during the epoch of reionisation based on a full radiation-hydrodynamics cosmological simulation that is able to capture both the large-scale process of reionisation and the small-scale properties of galaxies. We predict the Ly emission of galaxies in the cMpc SPHINX simulation at by computing the full Ly radiation transfer from ISM to IGM scales. SPHINX is able to reproduce many observational constraints such as the UV/Ly luminosity functions and stellar mass functions at z 6 for the dynamical range probed by our simulation (, erg/s, M). As intrinsic Ly emission and internal Ly escape fractions barely evolve from to 9, the observed suppression of Ly luminosities with increasing redshift is fully attributed to IGM absorption. For most observable galaxies (), the Ly line profiles are slightly shifted to the red due to internal radiative transfer effects which mitigates the effect of IGM absorption. Overall, the enhanced Ly suppression during reionisation traces the IGM neutral fraction well but the predicted amplitude of this reduction is a strong function of the Ly peak shift, which is set at ISM/CGM scales. We find that a large number of LAEs could be detectable in very deep surveys during reionisation when is still
Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ~0.035 and ~0.12 μm, rather than by large grains between ~0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars. © 2016 The Authors
Lateral thermokarst patterns in permafrost peat plateaus in northern Norway
Subarctic peatlands underlain by permafrost contain significant amounts of organic carbon. Our ability to quantify the evolution of such permafrost landscapes in numerical models is critical for providing robust predictions of the environmental and climatic changes to come. Yet, the accuracy of large-scale predictions has so far been hampered by small-scale physical processes that create a high spatial variability of thermal surface conditions, affecting the ground thermal regime and thus permafrost degradation patterns. In this regard, a better understanding of the small-scale interplay between microtopography and lateral fluxes of heat, water and snow can be achieved by field monitoring and process-based numerical modeling. Here, we quantify the topographic changes of the Šuoššjávri peat plateau (northern Norway) over a three-year period using drone-based repeat high-resolution photogrammetry. Our results show thermokarst degradation is concentrated on the edges of the plateau, representing 77 % of observed subsidence, while most of the inner plateau surface exhibits no detectable subsidence. Based on detailed investigation of eight zones of the plateau edge, we show that this edge degradation corresponds to an annual volume change of 0.13±0.07 m3 yr−1 per meter of retreating edge (orthogonal to the retreat direction).
Using the CryoGrid3 land surface model, we show that these degradation patterns can be reproduced in a modeling framework that implements lateral redistribution of snow, subsurface water and heat, as well as ground subsidence due to melting of excess ice. By performing a sensitivity test for snow depths on the plateau under steady-state climate forcing, we obtain a threshold behavior for the start of edge degradation. Small snow depth variations (from 0 to 30 cm) result in highly different degradation behavior, from stability to fast degradation. For plateau snow depths in the range of field measurements, the simulated annual volume changes are broadly in agreement with the results of the drone survey. As snow depths are clearly correlated with ground surface temperatures, our results indicate that the approach can potentially be used to simulate climate-driven dynamics of edge degradation observed at our study site and other peat plateaus worldwide. Thus, the model approach represents a first step towards simulating climate-driven landscape development through thermokarst in permafrost peatlands
Recent ground thermo-hydrological changes in a southern Tibetan endorheic catchment and implications for lake level changes
Climate change modifies the water and energy fluxes between the atmosphere and the surface in mountainous regions such as the Qinghai–Tibet Plateau (QTP), which has shown substantial hydrological changes over the last decades, including rapid lake level variations. The ground across the QTP hosts either permafrost or is seasonally frozen, and, in this environment, the ground thermal regime influences liquid water availability, evaporation and runoff. Consequently, climate-induced changes in the ground thermal regime may contribute to variations in lake levels, but the validity of this hypothesis has yet to be established.
This study focuses on the cryo-hydrology of the catchment of Lake Paiku (southern Tibet) for the 1980–2019 period. We process ERA5 data with downscaling and clustering tools (TopoSCALE, TopoSUB) to account for the spatial variability of the climate in our forcing data (Fiddes and Gruber, 2012, 2014). We use a distributed setup of the CryoGrid community model (version 1.0) to quantify thermo-hydrological changes in the ground during this period. Forcing data and simulation outputs are validated with data from a weather station, surface temperature loggers and observations of lake level variations. Our lake budget reconstruction shows that the main water input to the lake is direct precipitation (310 mm yr−1), followed by glacier runoff (280 mm yr−1) and land runoff (180 mm yr−1). However, altogether these components do not offset evaporation (860 mm yr−1).
Our results show that both seasonal frozen ground and permafrost have warmed (0.17 ∘C per decade 2 m deep), increasing the availability of liquid water in the ground and the duration of seasonal thaw. Correlations with annual values suggest that both phenomena promote evaporation and runoff. Yet, ground warming drives a strong increase in subsurface runoff so that the runoff
(evaporation + runoff) ratio increases over time. This increase likely contributed to stabilizing the lake level decrease after 2010.
Summer evaporation is an important energy sink, and we find active-layer deepening only where evaporation is limited. The presence of permafrost is found to promote evaporation at the expense of runoff, consistently with recent studies suggesting that a shallow active layer maintains higher water contents close to the surface. However, this relationship seems to be climate dependent, and we show that a colder and wetter climate produces the opposite effect. Although the present study was performed at the catchment scale, we suggest that this ambivalent influence of permafrost may help to understand the contrasting lake level variations observed between the south and north of the QTP, opening new perspectives for future investigations.Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk OnderzoekPeer Reviewe
- …